Skip to main content
Log in

Homological smoothness and deformations of generalized Weyl algebras

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

It is an immediate conclusion from Bavula’s papers [1], [2] that if a generalized Weyl algebra A = k[z; λ, η, φ(z)] is homologically smooth, then the polynomial φ(z) has no multiple roots. We prove in this paper that the converse is also true. Moreover, formal deformations of A are studied when k is of characteristic zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Bavula, Generalized Weyl algebras and their representations, Algebra i Analiz 4 (1992), 75–97.

    MathSciNet  Google Scholar 

  2. V. V. Bavula, Tensor homological minimal algebras, global dimension of the tensor product of algebras and of generalized Weyl algebras, Bulletin des Sciences Mathématiques 120 (1996), 293–335.

    MATH  MathSciNet  Google Scholar 

  3. R. Bocklandt, T. Schedler and M. Wemyss, Superpotentials and higher order derivations, Journal of Pure and Applied Algebra 214 (2010), 1501–1522.

    Article  MATH  MathSciNet  Google Scholar 

  4. K. A. Brown and J. J. Zhang, Dualising complexes and twisted Hochschild (co)homology for Noetherian Hopf algebras, Journal of Algebra 320 (2008), 1814–1850.

    Article  MATH  MathSciNet  Google Scholar 

  5. T. Brzeziński, Quantum homogeneous spaces as quantum quotient spaces, Journal of Mathematical Physics 37 (1996), 2388–2399.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. A. Farinati, A. Solotar and M. Suárez-Álvarez, Hochschild homology and cohomology of generalized Weyl algebras, Université de Grenoble. Annales de l’Institut Fourier 53 (2003), 465–488.

    Article  MATH  Google Scholar 

  7. M. Gerstenhaber, On the deformation of rings and algebras, Annals of Mathematics 79 (1964), 59–103.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Gerstenhaber and S. D. Schack, Algebraic cohomology and deformation theory, in Deformation Theory of Algebras and Structures and Applications (Il Ciocco, 1986), NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Vol. 247, Kluwer Academic Publishers, Dordrecht, 1988, pp. 11–264.

    Chapter  Google Scholar 

  9. T. Hadfield, Twisted cyclic homology of all Podleś quantum spheres, Journal of Geometry and Physics 57 (2007), 339–351.

    Article  MATH  MathSciNet  Google Scholar 

  10. I. Heckenberger and S. Kolb, Podleś’ quantum sphere: dual coalgebra and classification of covariant first-order differential calculus, Journal of Algebra 263 (2003), 193–214.

    Article  MATH  MathSciNet  Google Scholar 

  11. T. J. Hodges, Noncommutative deformations of type-A Kleinian singularities, Journal of Algebra 161 (1993), 271–290.

    Article  MATH  MathSciNet  Google Scholar 

  12. U. Krähmer, On the Hochschild (co)homology of quantum homogeneous spaces, Israel Journal of Mathematics 189 (2012), 237–266.

    Article  MATH  MathSciNet  Google Scholar 

  13. L.-Y. Liu, S.-Q. Wang and Q.-S. Wu, Twisted Calabi-Yau property of Ore extensions, Journal of Noncommutative Geometry 8 (2014), 587–609.

    Article  MATH  MathSciNet  Google Scholar 

  14. E. F. Müller and H.-J. Schneider, Quantum homogeneous spaces with faithfully flat module structures, Israel Journal of Mathematics 111 (1999), 157–190.

    Article  MATH  MathSciNet  Google Scholar 

  15. P. Podleś, Quantum spheres, Letters in Mathematical Physics 14 (1987), 193–202.

    Article  MATH  Google Scholar 

  16. L. Richard and A. Solotar, Isomorphisms between quantum generalized Weyl algebras, Journal of Algebra and its Applications 5 (2006), 271–285.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. J. Rotman, An Introduction to Homological Algebra, second ed., Universitext, Springer, New York, 2009.

    Book  MATH  Google Scholar 

  18. S. P. Smith, A class of algebras similar to the enveloping algebra of sl(2), Transactions of the American Mathematical Society 322 (1990), 285–314.

    MATH  MathSciNet  Google Scholar 

  19. A. Solotar, M. Suárez-Álvarez and Q. Vivas, Hochschild homology and cohomology of generalized Weyl algebras: the quantum case, Université de Grenoble. Annales de l’Institut Fourier 63 (2013), 923–956.

    Article  MATH  Google Scholar 

  20. M. Van den Bergh, Noncommutative homology of some three-dimensional quantum spaces, K-Theory 8 (1994), 213–230.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Van den Bergh, A relation between Hochschild homology and cohomology for Gorenstein rings, Proceedings of the American Mathematical Society 126 (1998), 1345–1348; Erratum, Proceedings of the American Mathematical Society 130 (2002), 2809–2810.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Yekutieli, The rigid dualizing complex of a universal enveloping algebra, Journal of Pure and Applied Algebra 150 (2000), 85–93.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyu Liu.

Additional information

The author acknowledges the support of the European Union for ERC grant No 257004-HHNcdMir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L. Homological smoothness and deformations of generalized Weyl algebras. Isr. J. Math. 209, 949–992 (2015). https://doi.org/10.1007/s11856-015-1242-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-015-1242-0

Keywords

Navigation