Skip to main content
Log in

Recurrence and transience for suspension flows

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study the thermodynamic formalism for suspension flows over countable Markov shifts with roof functions not necessarily bounded away from zero. We establish conditions to ensure the existence and uniqueness of equilibrium measures for regular potentials. We define the notions of recurrence and transience of a potential in this setting. We define the renewal flow, which is a symbolic model for a class of flows with diverse recurrence features. We study the corresponding thermodynamic formalism, establishing conditions for the existence of equilibrium measures and phase transitions. Applications are given to suspension flows defined over interval maps having parabolic fixed points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, Vol. 50, American Mathematical Society, Providence, RI, 1997.

    MATH  Google Scholar 

  2. L. M. Abramov, The entropy of a derived automorphism, Doklady Akademii Nauk SSSR 128 (1959), 647–650.

    MATH  MathSciNet  Google Scholar 

  3. L. M. Abramov, On the entropy of a flow, Doklady Akademii Nauk SSSR 128 (1959), 873–875.

    MATH  MathSciNet  Google Scholar 

  4. W. Ambrose and S. Kakutani, Structure and continuity of measurable flows, Duke Mathematical Journal 9 (1942), 25–42.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Artin, Ein Mechanisches System mit quasi-ergodischen Bahnen, in The Collected Papers of Emil Artin, Addison-Wesley, Reading, MA, 1965, pp. 499–501.

    Chapter  Google Scholar 

  6. M. Babillot and M. Peigné, Homologie des géodésiques fermées sur des variétés hyperboliques avec bouts cuspidaux, Annales Scientifiques de l’École Normale Supérieure 33 (2000), 81–120.

    Article  MATH  Google Scholar 

  7. V. Baladi and B. Vallée, Exponential decay of correlations for surface semi-flows without finite Markov partitions, Proceedings of the American Mathematical Society 133 (2005), 865–874.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Bálint and I. Melbourne, Decay of correlations and invariance principles for dispersing billiards with cusps, and related planar billiard flows, Journal of Statistical Physics 133 (2008), 435–447.

    Article  MATH  MathSciNet  Google Scholar 

  9. L. Barreira and G. Iommi, Suspension flows over countable Markov shifts, Journal of Statistical Physics 124 (2006), 207–230.

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Barreira and G. Iommi, Multifractal analysis and phase transitions for hyperbolic and parabolic horseshoes, Israel Journal of Mathematics 181 (2011), 347–379.

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Barreira, L. Radu and C. Wolf, Dimension of measures for suspension flows, Dynamical Systems 19 (2004), 89–107.

    Article  MATH  MathSciNet  Google Scholar 

  12. Ch. Bonatti, L. Dáz and M. Viana, Dynamics Beyond Uniform Hyperbolicity. A Global Geometric and Probabilistic Perspective, Encyclopaedia of Mathematical Sciences, Vol. 102, Mathematical Physics, III, Springer-Verlag, Berlin, 2005.

    MATH  Google Scholar 

  13. R. Bowen, Symbolic dynamics for hyperbolic flows, American Journal of Mathematics 95 (1973), 429–460.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin, 2008.

    MATH  Google Scholar 

  15. R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Inventiones Mathematicae 29 (1975), 181–202.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Bruin and M. Todd, Transience and thermodynamic formalism for infinitely branched interval maps, Journal of the London Mathematical Society 86 (2012), 171–194.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. I. Bufetov and B. M. Gurevich, Existence and uniqueness of the measure of maximal entropy for the Teichmüller flow on the moduli space of abelian differentials, Sbornik. Mathematics 202 (2011), 935–970.

    Article  MATH  MathSciNet  Google Scholar 

  18. L. A. Bunimovich and Y. G. Sinai, Markov partitions for dispersed billiards, Communications in Mathematical Physics 78 (1980/81), 247–280.

    Article  MATH  MathSciNet  Google Scholar 

  19. L. A. Bunimovich and Y. G. Sinai, Statistical properties of Lorentz gas with periodic configuration of scatterers, Communications in Mathematical Physics 78 (1980/81), 479–497.

    Article  MathSciNet  Google Scholar 

  20. L. A. Bunimovich, Y. G. Sinai and N. I. Chernov, Markov partitions for two-dimensional hyperbolic billiards, (Russian) Uspekhi Matematicheskikh Nauk 45 (1990), no. 3(273), 97–134, 221; translation in Russian Mathematical Surveys 45 (1990), no. 3, 105–152.

    MathSciNet  Google Scholar 

  21. J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps, Ergodic Theory and Dynamical Systems 23 (2003), 1383–1400.

    Article  MATH  MathSciNet  Google Scholar 

  22. Z. Coelho and A. Quas, Criteria for d-continuity, Transactions of the American Mathematical Society 350 (1998), 3257–3268.

    Article  MATH  MathSciNet  Google Scholar 

  23. F. Dal’bo and M. Peigné, Groupes du ping-pong et géodésiques fermées en courbure-1, Université de Grenoble. Annales de l’Institut Fourier 46 (1996), 755–799.

    Article  MATH  Google Scholar 

  24. Y. Daon, Bernoullicity of equilibrium measures on countable Markov shifts, Discrete and Continuous Dynamical Systems 33 (2013), 4003–4015.

    Article  MATH  MathSciNet  Google Scholar 

  25. L. Díaz, K. Gelfert and M. Rams, Rich phase transitions in step skew products, Nonlinearity 24 (2011), 3391–3412.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Field, I. Melbourne and A. Török, Stability of mixing and rapid mixing for hyperbolic flows, Annals of Mathematiccs 166 (2007), 269–291.

    Article  MATH  Google Scholar 

  27. B. M. Gurevič, Topological entropy for denumerable Markov chains, Doklady Akademii Nauk SSSR 10 (1969), 911–915.

    Google Scholar 

  28. B. M. Gurevič, Shift entropy and Markov measures in the path space of a denumerable graph, Doklady Akademii Nauk SSSR 11 (1970), 744–747.

    Google Scholar 

  29. U. Hamenstädt, Symbolic dynamics for the Teichmüller flow, preprint (arXiv:1112.6107).

  30. F. Hofbauer, Examples for the nonuniqueness of the equilibrium state, Transactions of the American Mathematical Society 228 (1977), 223–241.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. P. Holland, M. Nicol and A. Török, Extreme value theory for non-uniformly expanding dynamical systems, Transactions of the American Mathematical Society 364 (2012), 661–688.

    Article  MATH  MathSciNet  Google Scholar 

  32. E. Hopf, Ergodentheorie, Ergebnisse der Mathemtik und ihrer Grenzgebiete, Vol. 5, Springer, Berlin, 1937.

    Book  Google Scholar 

  33. G. Iommi and T. Jordan, Phase transitions for suspension flows, Communications in Mathematical Physics 320 (2013), 475–498.

    Article  MATH  MathSciNet  Google Scholar 

  34. G. Iommi and M. Todd, Natural equilibrium states for multimodal maps, Communications in Mathematical Physics 300 (2010), 65–94.

    Article  MATH  MathSciNet  Google Scholar 

  35. G. Iommi and M. Todd, Transience in dynamical systems Ergodic Theory and Dynamical Systems 33 (2013), 1450–1476.

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Jaerisch, M. Kesseböhmer and S. Lamei, Induced topological pressure for countable state Markov shifts, Stochastics and Dynamics 14 (2014), 1350016.

    Article  MathSciNet  Google Scholar 

  37. G. Keller, Equilibrium States in Ergodic Theory, London Mathematical Society Student Texts, Vol. 42. Cambridge University Press, Cambridge, 1998.

    Book  MATH  Google Scholar 

  38. T. Kempton, Thermodynamic formalism for suspension flows over countable Markov shifts, Nonlinearity 24 (2011), 2763–2775.

    Article  MATH  MathSciNet  Google Scholar 

  39. C. Liverani, B. Saussol and S. Vaienti, Probabilistic approach to intermittency, Ergodic Theory and Dynamical Systems 19 (1999), 671–685.

    Article  MATH  MathSciNet  Google Scholar 

  40. A. O. Lopes, The zeta function, nondifferentiability of pressure, and the critical exponent of transition, Advances in Mathematics 101 (1993), 133–165.

    Article  MATH  MathSciNet  Google Scholar 

  41. R. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems, Proceedings of the London Mathematical Society 73 (1996), 105–154.

    Article  MATH  MathSciNet  Google Scholar 

  42. R. Mauldin and M. Urbański, Gibbs states on the symbolic space over an infinite alphabet, Israel Journal of Mathematics 125 (2001), 93–130.

    Article  MATH  MathSciNet  Google Scholar 

  43. R. Mauldin and M. Urbański, Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets, Cambridge Tracts in Mathematics, Vol. 148, Cambridge University Press, Cambridge, 2003.

    Book  Google Scholar 

  44. I. Melbourne, Rapid decay of correlations for nonuniformly hyperbolic flows, Transactions of the American Mathematical Society 359 (2007), 2421–2441.

    Article  MATH  MathSciNet  Google Scholar 

  45. I. Melbourne, Decay of correlations for slowly mixing flows, Proceedings of the London Mathematical Society 98 (2009) 163–190.

    Article  MATH  MathSciNet  Google Scholar 

  46. I. Melbourne and A. Török, Statistical limit theorems for suspension flows, Israel Journal of Mathematics 144 (2004), 191–209.

    Article  MATH  MathSciNet  Google Scholar 

  47. H. M. Morse, Recurrent geodesics on a surface of negative curvature, Transactions of the American Mathematical Society 22 (1921), 84–100.

    Article  MATH  MathSciNet  Google Scholar 

  48. K. Nakaishi, Multifractal formalism for some parabolic maps, Ergodic Theory and Dynamical Systems 20 (2000), 843–857.

    Article  MATH  MathSciNet  Google Scholar 

  49. M. J. Pacifico and M. Todd, Thermodynamic formalism for contracting Lorenz flows, Journal of Statistical Physics 139 (2010), 159–176.

    Article  MATH  MathSciNet  Google Scholar 

  50. M. Pollicott, On the mixing of Axiom A attracting flows and a conjecture of Ruelle, Ergodic Theory and Dynamical Systems 19 (1999), 535–548.

    Article  MATH  MathSciNet  Google Scholar 

  51. Y. Pomeau and P. Manneville, Intermittent transition to turbulence in dissipative dynamical systems, Communications in Mathematical Physicsa 74 (1980), 189–197.

    Article  MathSciNet  Google Scholar 

  52. M. Ratner, Markov partitions for Anosov flows on n-dimensional manifolds, Israel Journal of Mathematics 15 (1973), 92–114.

    Article  MATH  MathSciNet  Google Scholar 

  53. O. Sarig, Thermodynamic formalism for countable Markov shifts, Ergodic Theory and Dynamical Systems 19 (1999), 1565–1593.

    Article  MATH  MathSciNet  Google Scholar 

  54. O. Sarig, Thermodynamic formalism for null recurrent potentials, Israel Journal of Mathematics 121 (2001), 285–311.

    Article  MATH  MathSciNet  Google Scholar 

  55. O. Sarig, Phase transitions for countable Markov shifts, Communications in Mathematical Physics 217 (2001), 555–577.

    Article  MATH  MathSciNet  Google Scholar 

  56. O. Sarig, Existence of Gibbs measures for countable Markov shifts, Proceedings of the American Mathematical Society 131 (2003), 1751–1758.

    Article  MATH  MathSciNet  Google Scholar 

  57. O. Sarig, Symbolic dynamics for surface diffeomorphisms with positive topological entropy, Journal of the American Mathematical Society 26 (2013), 341–426.

    Article  MATH  MathSciNet  Google Scholar 

  58. S. Savchenko, Special flows constructed from countable topological Markov chains, Functional Analysis and its Applications 32 (1998), 32–41.

    Article  MATH  MathSciNet  Google Scholar 

  59. C. Series, Geometrical Markov coding of geodesics on surfaces of constant negative curvature, Ergodic Theory and Dynamical Systems 6 (1986), 601–625.

    Article  MATH  MathSciNet  Google Scholar 

  60. Y. G. Sinai, Gibbs measures in ergodic theory (English translation), Russian Mathematical Surveys 27 (1972), 21–64.

    Article  MATH  MathSciNet  Google Scholar 

  61. P. Walters, A variational principle for the pressure of continuous transformations, American Journal of Mathematics 97 (1975), 937–971.

    Article  MathSciNet  Google Scholar 

  62. P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Vol. 79, Springer, Berlin, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Godofredo Iommi.

Additional information

G. I. was partially supported by the Center of Dynamical Systems and Related Fields código ACT1103 and by Proyecto Fondecyt 1110040.

T. J. wishes to thank Proyecto Mecesup-0711 for funding his visit to PUC-Chile.

M. T. would like to thank I. Melbourne and D. Thompson for useful comments. He is also grateful for the support of Proyecto Fondecyt 1110040 for funding his visit to PUC-Chile and for partial support from NSF grant DMS 1109587.

All three authors thank the referees for their careful reading of the paper and useful suggestions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iommi, G., Jordan, T. & Todd, M. Recurrence and transience for suspension flows. Isr. J. Math. 209, 547–592 (2015). https://doi.org/10.1007/s11856-015-1229-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-015-1229-x

Keywords

Navigation