R. Aharoni, A problem in rearrangements of (0,1) matrices, Discrete Mathematics 30 (1980), 191–201.
MathSciNet
Article
MATH
Google Scholar
D. Ahlberg, Partially observed Boolean sequences and noise sensitivity, Combinatorics, Probability and Computing, to appear.
R. Ahlswede and G. O. H. Katona, Graphs with maximal number of adjacent pairs of edges, Acta Mathematica Academiae Scientiarum Hungaricae 32 (1978), 97–120.
MathSciNet
Article
MATH
Google Scholar
K. S. Alexander, The RSW theorem for Continuum Percolation and the CLT for Euclidean minimal spanning trees, The Annals of Applied Probability 6 (1996), 466–494.
MathSciNet
Article
MATH
Google Scholar
N. Alon and J. Spencer, The Probabilistic Method, 3rd edition, Wiley Interscience, New York, 2008.
Book
MATH
Google Scholar
P. Balister, B. Bollobás and M. Walters, Continuum Percolation with steps in the square or the disc, Random Structures & Algorithms 26 (2005), 392–403.
MathSciNet
Article
MATH
Google Scholar
I. Benjamini and O. Schramm, Conformal invariance of Voronoi percolation, Communications in Mathematical Physics 197 (1996), 75–107.
MathSciNet
Article
Google Scholar
I. Benjamini and O. Schramm, Exceptional planes of percolation, Probability Theory and Related Fields 111 (1998), 551–564.
MathSciNet
Article
MATH
Google Scholar
I. Benjamini, G. Kalai and O. Schramm, Noise sensitivity of Boolean functions and applications to percolation, Institut des Hautes Études Scientifiques. Publications Mathématiques 90 (1999), 5–43.
MathSciNet
Article
MATH
Google Scholar
I. Benjamini, O. Schramm and D. B. Wilson, Balanced Boolean functions that can be evaluated so that every input bit is unlikely to be read, In STOC’05: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, ACM, New York, 2005, pp. 244–250.
Google Scholar
C. Bey, An upper bound on the sum of squares of degrees in a hypergraph, Discrete Mathematics 269 (2003), 259–263.
MathSciNet
Article
MATH
Google Scholar
B. Bollobás, Modern Graph Theory, 2nd edition, Springer, Berlin, 2002.
Google Scholar
B. Bollobás and O. Riordan, The critical probability for random Voronoi percolation in the plane is 1/2, Probability Theory and Related Fields 136 (2006), 417–468.
MathSciNet
Article
MATH
Google Scholar
B. Bollobás and O. Riordan, Percolation, Cambridge University Press, Cambridge, 2006.
Book
MATH
Google Scholar
J. Bourgain, J. Kahn, G. Kalai, Y. Katznelson and N. Linial, The influence of variables in product spaces, Israel Journal of Mathematics 77 (1992), 55–64.
MathSciNet
Article
MATH
Google Scholar
E. I. Broman, C. Garban and J. E. Steif, Exclusion sensitivity of Boolean functions, Probability Theory and Related Fields 155 (2013), 621–663.
MathSciNet
Article
MATH
Google Scholar
D. de Caen, An upper bound on the sum of squares of degrees in a graph, Discrete Mathematics 185 (1998), 245–248.
MathSciNet
Article
MATH
Google Scholar
H. Chernoff, A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations, Annals of Mathematical Statistics 23 (1952), 493–507.
MathSciNet
Article
MATH
Google Scholar
E. Friedgut, Influences in product spaces: KKL and BKKKL revisited, Combinatorics, Probability and Computing 13 (2004), 17–29.
MathSciNet
Article
MATH
Google Scholar
C. Garban, Oded Schramm’s contributions to noise sensitivity, The Annals of Probability 39 (2011), 1702–1767.
MathSciNet
Article
MATH
Google Scholar
C. Garban, G. Pete, and O. Schramm, The Fourier spectrum of critical percolation, Acta Mathematica 205 (2010), 19–104.
MathSciNet
Article
MATH
Google Scholar
E. N. Gilbert, Random plane networks, Journal of the Society for Industrial and Applied Mathematics 9 (1961), 533–543.
Article
MATH
Google Scholar
G. Grimmett, Percolation, 2nd edition, Springer-Verlag, Berlin, 1999.
Book
MATH
Google Scholar
O. Häggström, Y. Peres and J. E. Steif, Dynamical percolation, Annales de l’Institut Henri Poincaré. Probabilités et Statistiques 33 (1997), 497–528.
Article
MATH
Google Scholar
A. Hammond, G. Pete and O. Schramm, Local time on the exceptional set of dynamical percolation, and the incipient infinite cluster, submitted, arXiv:1208.3826.
J. Kahn, G. Kalai and N. Linial, The influence of variables on Boolean functions, in 29th Annual Symposium on Foundations of Computer Science, 1988, pp. 68–80.
N. Keller, A simple reduction from a biased measure on the discrete cube to the uniform measure, European Journal of Combinatorics 33 (2012), 1943–1957.
MathSciNet
Article
MATH
Google Scholar
N. Keller and G. Kindler, Quantitative relation between noise sensitivity and influences, Combinatorica 33 (2013), 45–71.
MathSciNet
Article
MATH
Google Scholar
N. Keller, E. Mossel and T. Schlank, A note on the entropy/influence conjecture, Discrete Mathematics 312 (2012), 3364–3372.
MathSciNet
Article
MATH
Google Scholar
R. Meester and R. Roy, Continuum Percolation, Cambridge University Press, Cambridge, 1996.
Book
MATH
Google Scholar
M. V. Menshikov and A. F. Sidorenko, Coincidence of critical points in Poisson percolation models, Rossiıskaya Akademiya Nauk. Teoriya Veroyatnosteı i ee Primeneniya, 32 (1987), 603–606.
MathSciNet
Google Scholar
R. O’Donnell, Computational applications of noise sensitivity, Ph.D, thesis, MIT, 2003.
R. E. A. C. Paley, A remarkable series of orthogonal functions, Proceedings of the London Mathematical Society 34 (1932), 241.
MathSciNet
Article
Google Scholar
R. Roy, The Russo-Seymour-Welsh theorem and the equality of critical densities and the dual critical densities for continuum percolation, The Annals of Probability 18 (1990), 1563–1575.
MathSciNet
Article
MATH
Google Scholar
O. Schramm and J. Steif, Quantitative noise sensitivity and exceptional times for percolation, Annals of Mathematics 171 (2010), 619–672.
MathSciNet
Article
MATH
Google Scholar
J. Steif, A survey of dynamical percolation, in Fractal Geometry and Stochastics IV, Progress in Probability, Vol. 61, Birkhäuser, Basel, 2009. pp. 145–174.
Chapter
Google Scholar
M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, Institut des Hautes Études Scientifiques. Publications Mathématiques 81 (1995), 73–205.
MathSciNet
Article
MATH
Google Scholar
J. L. Walsh, A closed set of normal orthogonal functions, American Journal of Mathematics 45 (1923), 5–24.
MathSciNet
Article
MATH
Google Scholar