Skip to main content
Log in

Classification of singular ℚ-homology planes. I. Structure and singularities

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

A ℚ-homology plane is a normal complex algebraic surface having trivial rational homology. We obtain a structure theorem for ℚ-homology planes with smooth locus of non-general type. We show, in particular, that if a ℚ-homology plane contains a non-quotient singularity, then it is a quotient of an affine cone over a projective curve by an action of a finite group respecting the set of lines through the vertex. In particular, it is contractible, has negative Kodaira dimension and only one singular point. We describe minimal normal completions of such planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Abhyankar, Quasirational singularities, American Journal of Mathematics 101 (1979), 267–300.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Artin, On isolated rational singularities of surfaces, American Journal of Mathematics 88 (1966), 129–136.

    Article  MathSciNet  MATH  Google Scholar 

  3. W. P. Barth, K. Hulek, C. A. M. Peters and A. Van de Ven, Compact complex surfaces, second edn., Results in Mathematics and Related Areas, 3rd Series, A Series of Modern Surveys in Mathematics, Vol. 4, Springer-Verlag, Berlin, 2004.

    MATH  Google Scholar 

  4. E. Brieskorn, Rationale Singularitäten komplexer Flächen, Inventiones Mathematicae 4 (1967/1968), 336–358.

    Article  MathSciNet  Google Scholar 

  5. D. Daigle and P. Russell, On log-homology planes and weighted projective planes, Canadian Journal of Mathematics 56 (2004), 1145–1189.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Flenner and M. Zaidenberg, Rational curves and rational singularities, Mathematische Zeitschrift 244 (2003), 549–575.

    MathSciNet  MATH  Google Scholar 

  7. T. Fujita, On the topology of noncomplete algebraic surfaces, Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics 29 (1982), 503–566.

    MathSciNet  MATH  Google Scholar 

  8. M. Goresky and R. MacPherson, Stratified Morse Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Vol. 14, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  9. R. V. Gurjar and M. Miyanishi, Affine lines on logarithmic Q -homology planes, Mathematische Annalen 294 (1992), 463–482.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. V. Gurjar, C. R. Pradeep, and Anant. R. Shastri, On rationality of logarithmicQ-homology planes. II, Osaka Journal of Mathematics 34 (1997), 725–743.

    MathSciNet  MATH  Google Scholar 

  11. H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Mathematische Annalen 146 (1962), 331–368.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York, 1977.

    Book  MATH  Google Scholar 

  13. A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.

    MATH  Google Scholar 

  14. S. Iitaka, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 76, Springer-Verlag, New York, 1982, An introduction to birational geometry of algebraic varieties, North-Holland Mathematical Library, 24.

    Book  MATH  Google Scholar 

  15. Y. Kawamata, On the classification of noncomplete algebraic surfaces, in Algebraic Geometry (Proc. Summer Meeting, University Copenhagen, Copenhagen, 1978), Lecture Notes in Mathematics, Vol. 732, Springer, Berlin, 1979, pp. 215–232.

    Google Scholar 

  16. M. Koras and P. Russell, C*-actions on C 3: the smooth locus of the quotient is not of hyperbolic type, Journal of Algebraic Geometry 8 (1999), 603–694.

    MathSciNet  MATH  Google Scholar 

  17. M. Koras and P. Russell, Contractible affine surfaces with quotient singularities, Transformation Groups 12 (2007), 293–340.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Langer, Logarithmic orbifold Euler numbers of surfaces with applications, Proceedings of the London Mathematical Society, Third Series 86 (2003), 358–396.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. B. Laufer, On rational singularities, American Journal of Mathematics 94 (1972), 597–608.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Institut des Hautes Études Scientifiques. Publications Mathématiques (1969), no. 36, 195–279.

  21. M. Miyanishi, Singularities of normal affine surfaces containing cylinderlike open sets, Journal of Algebra 68 (1981), 268–275.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Miyanishi, Open Algebraic Surfaces, CRM Monograph Series, Vol. 12, American Mathematical Society, Providence, RI, 2001.

    MATH  Google Scholar 

  23. M. Miyanishi and T. Sugie, Homology planes with quotient singularities, Journal of Mathematics of Kyoto University 31 (1991), 755–788.

    MathSciNet  MATH  Google Scholar 

  24. M. Miyanishi and S. Tsunoda, Noncomplete algebraic surfaces with logarithmic Kodaira dimension −∞ and with nonconnected boundaries at infinity, Japanese Journal of Mathematics, New Series 10 (1984), 195–242.

    MathSciNet  MATH  Google Scholar 

  25. D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Institut des Hautes Études Scientifiques. Publications Mathématiques (1961), 5–22.

  26. S. Yu. Orevkov, On singularities that are quasirational in the sense of Abhyankar, Rossiĭskaya Akademiya Nauk 50 (1995), 201–202.

    MathSciNet  Google Scholar 

  27. P. Orlik and P. Wagreich, Isolated singularities of algebraic surfaces with C* action, Annals of Mathematics, Second Series 93 (1971), 205–228.

    Article  MathSciNet  MATH  Google Scholar 

  28. K. Palka, Exceptional singular Q -homology planes, Universite de Grenoble, Annales de l’Institut Fourier 61 (2011), 745–774, arXiv:0909.0772.

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Palka, Classification of singular Q -homology planes. II.C 1-and C *-rulings, Pacific Journal of Mathematics 258 (2012), 421–457. arXiv:1201.2463.

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Pinkham, Normal surface singularities with C* action, Mathematische Annalen 227 (1977), 183–193.

    Article  MathSciNet  Google Scholar 

  31. C. R. Pradeep and A. R. Shastri, On rationality of logarithmic Q -homology planes. I, Osaka Journal of Mathematics 34 (1997), 429–456.

    MathSciNet  MATH  Google Scholar 

  32. M. Reid, Young person’s guide to canonical singularities, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proceedings of Symposia in Pure Mathematics, Vol. 46, American Mathematical Society, Providence, RI, 1987, pp. 345–414.

    Chapter  Google Scholar 

  33. S. Schröer, On contractible curves on normal surfaces, Journal für die Reine und Angewandte Mathematik 524 (2000), 1–15.

    Article  MATH  Google Scholar 

  34. S. Tsunoda, Structure of open algebraic surfaces. I, Journal of Mathematics of Kyoto University 23 (1983), 95–125.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol Palka.

Additional information

The author was supported by Polish Grant NCN N N201 608640.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palka, K. Classification of singular ℚ-homology planes. I. Structure and singularities. Isr. J. Math. 195, 37–69 (2013). https://doi.org/10.1007/s11856-012-0123-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-012-0123-z

Keywords

Navigation