Skip to main content

Complements to Ample Divisors and Singularities

  • Chapter
  • First Online:
Handbook of Geometry and Topology of Singularities II

Abstract

The paper reviews recent developments in the study of Alexander invariants of quasi-projective manifolds using methods of singularity theory. Several results in topology of the complements to singular plane curves and hypersurfaces in projective space extended to the case of curves on simply connected smooth projective surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I.e. a family of divisors parametrized by \({\mathbb P}^1\).

  2. 2.

    Those are absent in the classical case on pencils of lines \(X={\mathbb P}^2\) of Zariski-van Kampen theorem.

  3. 3.

    We assume that there are no vanishing cycles corresponding to critical points of \(\pi \) and no points of D inside this ball.

  4. 4.

    This implies that \(\sigma _i^{-1}(t_i)=t_it_{i+1}t_i^{-1}, \sigma _i^{-1}(t_{i+1})=t_i\).

  5. 5.

    In this case we call \(Y_{\phi }\) 1-finite.

  6. 6.

    An example of infinite cyclic covers which is infinite in dimension 1 is given by the complement to a set [3] containing 3 points in \({\mathbb P}^1\). Let (ab) be generators of the free group \(\pi _1({\mathbb P}^1\setminus [3])\) and \(\phi \) is the quotient of the normal subgroup generated by b. Then \({\mathbb P}^1\setminus [3]\) is homotopy equivalent to a wedge of two circles and \(({\mathbb P}^1\setminus [3])_{\phi }\) can be viewed as a real line with the circle attached at each integer point of this line with the covering group \({\mathbb Z}\) acting via translations. In particular \(H_1({\mathbb P}^1\setminus [3])_{\phi },{\mathbb Z})\) is a free abelian group with countably many generators.

  7. 7.

    The condition \(a_0=0\) is equivalent to finite dimensionality of \(H_1(Y_{\phi },{\mathbb Q})\) over \({\mathbb Q}\).

  8. 8.

    I.e. a loop consisting of a path connecting the base point with a point in vicinity of the irreducible component of D, the oriented boundary of a small disk in X transversal to this component of D at its smooth point and not intersecting the other components of D, with the same path used to return back to the base point; orientation of the small disk must be positive i.e. such that its orientation will be compatible with the complex orientations of smooth locus of divisor and the ambient manifold. As an element of the fundamental group, only the conjugacy class of a meridian is well defined.

  9. 9.

    Recall that the ground field here is \({\mathbb C}\). For varieties over non-algebraically closed fields, the inertia group I(x) of \(x \in \Delta \) (which is the subgroup of the decomposition group consisting of automorphisms inducing trivial automorphism of the extension of the residue fields of f(x) by the residue field of x (cf. [104] Expose V, Sect. 2) is a proper subgroup of the decomposition group.

  10. 10.

    Recall that this follows from identification \(H_{2 \dim D}(D,U(1))=H^{2 \dim D}(Y,Y \setminus D,U(1))\) obtained by excision and Lefschetz duality.

  11. 11.

    Recall that Y is simply connected and hence \(\mathcal{L}_{\chi }\) is well defined.

  12. 12.

    The support is assumed to be a reduced variety.

  13. 13.

    However \(Char_1(\pi _1({\mathbb P}^1\setminus [3]),ab)=({\mathbb C}^*)^2\) where [3] is a subset containing 3 points and ab is the abelianization of the free group.

  14. 14.

    \(Spec {\mathbb C}[A]\) is algebraic group with CardTorA connected components with \(({\mathbb C}^*)^{rk A}\) being the component of identity.

  15. 15.

    The order of vanishing of the Fitting ideal of \(H_1(Y_{\phi },{\mathbb C})\) at (1, ...., 1) in general is different than \(rk H_1(Y,{\mathbb C})\) which is the first Betti number of trivial local system.

  16. 16.

    The integer \(d(D^{\chi },\chi )\) is called the depth of the character \(\chi \) of the curve \(D^{\chi }\).

  17. 17.

    We also use that removal 0-dimensional set SingD from a 4-dimensional manifold does not change the first Betti number.

  18. 18.

    We call D a divisor with isolated non-normal crossings, if \(\dim NNC(D)=0\).

  19. 19.

    The convention is that if \(x \notin D\) then D does have normal crossing at x and the dimension of empty set is \(-1\).

  20. 20.

    Only the last claim in (ii) requires singularity of f to be isolated.

  21. 21.

    Which is also the universal cover for \(n \ge 2\) since the fundamental group is abelian in this case.

  22. 22.

    Torsion freeness condition of \(H_1(X,{\mathbb Z})\) is introduced to simplify the exposition.

  23. 23.

    By a polytope we mean a set of solutions to a finite collection of inequalities. All polytopes considered here are bounded (subsets of a unit cube) and hence are the convex hulls of the sets of their vertices. Faces are subsets of the boundary of a polytope which are the convex hulls of a subset of the set of vertices of the polytope. The dimension of a polytope (including a face) is the maximal dimension of the balls in its interior (with the dimension of a vertex being zero).

  24. 24.

    I.e. the set of solutions to a linear inequality.

  25. 25.

    This is a local version of the global construction used in Proposition 10.3.9. Here the rank of the fundamental group coincides with the number of irreducible components of the divisor.

  26. 26.

    The term introduced by A. Nadel in 1990, cf. [169].

  27. 27.

    Strict polytopes of quasiadjunction were described just before Definition 10.4.3.

  28. 28.

    The number of global polytopes of quasi-adjunction is at most \(\prod _{k \in Sing(D)} n(P_k)\) where \(n(P_k)\) is the number of local polytopes of quasi-adjunction at singular point \(P_k\).

  29. 29.

    cf. construction described in Proposition 10.3.9.

  30. 30.

    I.e. not contained properly in a contributing face of the same strict global polytope of quasi-adjunction.

  31. 31.

    Such circle of problems is inspired by conjectural asymptotic of number fields extensions having a given group as the Galois group or the group of its Galois closure, which are unramified outside an arbitrary subset of primes while the size of the norm of discriminant grows [156]: Malle conjectures implies a positive answer to the inverse problem of the Galois with little hope for solution in near future (as is obtaining a characterization of quasi-projective group).

  32. 32.

    The results in this section make this assumption. It should be possible to eliminate it with essential conclusions remaining intact.

  33. 33.

    I.e. the Hesse arrangement of 12 lines formed by lines containing triples of inflection points of plane smooth cubic cf. [137].

  34. 34.

    I.e. such that the codimension of the base locus of the linear system it defines is at least 2.

  35. 35.

    Important results on geometry of such curves were obtained much earlier by italian school, notably B.Segre, Chisini and his school cf. [193].

  36. 36.

    Generic choice assures that the fundamental group of the complement to the intersection with the plane inside this plane is isomorphic to the fundamental group of the complement to the discriminant of the complete linear system. Non-generic section were studies in very special cases. For a recent study cf. [85].

  37. 37.

    I.e. for any \(t\in T\) there is a neighborhood \(U\subset T\) such that \(\Phi ^{-1}(U)\) and \(T\times \Phi ^{-1}(t)\) are equivalent as stratified spaces.

  38. 38.

    The term was coined in [22] in reference to first example found by Zariski in 1930s.

  39. 39.

    Zariski k-tuples are sets of k curves in distinct classes of equivalence (B) but in the same class (D); sometimes, in a more loose usage, the reference is to sets of k curves in distinct classes for some equivalences (A)–(E) but not another.

References

  1. A. Akyol, A.Degtyarev, Geography of irreducible plane sextics. Proc. Lond. Math. Soc. (3) 111 (2015), no. 6, 1307–1337.

    Google Scholar 

  2. M. Alberich-Carramiñana, J. Alvarez Montaner, F. Dachs-Cadefau, V. González-Alonso, Poincaré series of multiplier ideals in two-dimensional local rings with rational singularities. Adv. Math. 304 (2017), 769–792.

    Google Scholar 

  3. J. W. Alexander, Topological invariants of knots and links. Trans. Amer. Math. Soc. 30 (1928), no. 2, 275–306.

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Alexeev, V.; R. Pardini, On the existence of ramified abelian covers. Rend. Semin. Mat. Univ. Politec. Torino 71 (2013), no. 3–4, 307–315.

    Google Scholar 

  5. P. Aluffi, Characteristic classes of discriminants and enumerative geometry. (English summary) Comm. Algebra 26 (1998), no. 10, 3165–3193.

    Google Scholar 

  6. M. Amram, M. Teicher; Fei Ye, Moduli spaces of arrangements of 10 projective lines with quadruple points. Adv. in Appl. Math. 51 (2013), no. 3, 392–418.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Amram, R. Lehman, R. Shwartz, M. Teicher, Classification of fundamental groups of Galois covers of surfaces of small degree degenerating to nice plane arrangements. Topology of algebraic varieties and singularities, 65–94, Contemp. Math., 538.

    Google Scholar 

  8. M. Amram, M. Teicher, M. A. Uludag, Fundamental groups of some quadric-line arrangements. Topology Appl. 130 (2003), no. 2, 159–173.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Arapura, Geometry of cohomology support loci for local systems. I. J. Algebraic Geom. 6 (1997), no. 3, 563–597.

    MathSciNet  MATH  Google Scholar 

  10. D. Arapura, M. Nori, Solvable fundamental groups of algebraic varieties and Kähler manifolds. Compositio Math. 116 (1999), no. 2, 173–188.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Arnold,; S. Gusein-Zade, A. Varchenko, Singularities of differentiable maps. Vol. II. Monodromy and asymptotics of integrals. Monographs in Mathematics, 83. Birkhäuser Boston Inc, Boston, MA, 1988.

    Google Scholar 

  12. E. Artal Bartolo, J. I. Cogolludo-Agustín, J. Martín-Morales, Triangular curves and cyclotomic Zariski tuples. Collect. Math. 71 (2020), no. 3, 427–441.

    Google Scholar 

  13. E. Artal Bartolo, J. I. Cogolludo-Agustín, Some open questions on arithmetic Zariski pairs.Singularities in geometry, topology, foliations and dynamics, 31–54, Trends Math., Birkhäuser/Springer, 2017.

    Google Scholar 

  14. E. Artal Bartolo, J. I. Cogolludo-Agustín, B.Guerville-Ballé, M.Marco-Buzunáriz, An arithmetic Zariski pair of line arrangements with non-isomorphic fundamental group. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 111 (2017), no. 2, 377–402.

    Google Scholar 

  15. E. Artal Bartolo, J. I. Cogolludo, H.Tokunaga, A survey on Zariski pairs. Algebraic geometry in East Asia-Hanoi, 2005, 1–100, Adv. Stud. Pure Math., 50, Math. Soc. Japan, Tokyo, 2008.

    Google Scholar 

  16. E. Artal Bartolo, R. Carmona Ruber, J. I. Cogolludo-Agustín, Braid monodromy and topology of plane curves. Duke Math. J. 118 (2003), no. 2, 261–278.

    Google Scholar 

  17. E. Artal Bartolo, Enrique, R. Carmona Ruber, J. I. Cogolludo Agustín, Essential coordinate components of characteristic varieties. Math. Proc. Cambridge Philos. Soc. 136 (2004), no. 2, 287–299.

    Google Scholar 

  18. E. Artal Bartolo, Topology of arrangements and position of singularities. Ann. Fac. Sci. Toulouse Math. (6) 23 (2014), no. 2, 223–265.

    Google Scholar 

  19. E. Artal Bartolo, J.I.Cogolludo-Agustín, D.Matei, Characteristic varieties of quasi-projective manifolds and orbifolds. Geom. Topol. 17 (2013), no. 1, 273–309.

    Google Scholar 

  20. E. Artal Bartolo, J. I. Cogolludo-Agustín, Jose Ignacio, A. Libgober, Characters of fundamental groups of curve complements and orbifold pencils. Configuration spaces, 81–109, CRM Series, 14, Ed. Norm., Pisa, 2012.

    Google Scholar 

  21. E. Artal Bartolo, J. I. Cogolludo-Agustín, A. Libgober, Depth of cohomology support loci for quasi-projective varieties via orbifold pencils. Rev. Mat. Iberoam. 30 (2014), no. 2, 373–404.

    Google Scholar 

  22. E. Artal-Bartolo, Sur les couples de Zariski. J. Algebraic Geom. 3 (1994), no. 2, 223–247.

    MathSciNet  MATH  Google Scholar 

  23. D. Auroux, L. Katzarkov, Branched coverings of \({ CP}^2\) and invariants of symplectic 4-manifolds. Invent. Math. 142 (2000), no. 3, 631–673.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Auroux, S. Donaldson, L. Katzarkov, M. Yotov, Fundamental groups of complements of plane curves and symplectic invariants. Topology 43 (2004), no. 6, 1285–1318.

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Bahloul, Demonstration constructive de l’existence de polynomes de Bernstein-Sato pour plusieurs fonctions analytiques, Compos. Math. 141 (2005), no. 1, p. 175–191.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Bannai, H. Tokunaga, Geometry of bisections of elliptic surfaces and Zariski N-plets II. Topology Appl. 231 (2017), 10–25.

    Article  MathSciNet  MATH  Google Scholar 

  27. V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebraic Geom. 3 (1994), no. 3, 493–535.

    MathSciNet  MATH  Google Scholar 

  28. D. Bessis, Finite complex reflection arrangements are \(K(\pi ,1)\). Ann. of Math. (2) 181 (2015), no. 3, 809–904.

    Google Scholar 

  29. E. Brieskorn, Die Fundamentalgruppe des Raumes der regularen Orbits einer endlichen komplexen Spiegelungsgruppe. Invent. Math. 12 (1971), 57–61.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Beauville, Annulation du \(H^1\) pour les fibres en droites plats, Complex algebraic varieties (Bayreuth, 1990), 1–15, Lecture Notes in Math., 1507, Springer, Berlin, 1992.

    Google Scholar 

  31. R. Bieri, B. Eckmann, Groups with homological duality generalizing Poincaré duality. Invent. Math. 20 (1973), 103–124.

    Article  MathSciNet  MATH  Google Scholar 

  32. I. Biswas, M. Mj, Quasiprojective three-manifold groups and complexification of three-manifolds. Int. Math. Res. Not. IMRN 2015, no. 20, 10041–10068.

    Article  MathSciNet  MATH  Google Scholar 

  33. G. Bredon, Introduction to compact transformation groups. Pure and Applied Mathematics, Vol. 46. Academic Press, New York-London, 1972.

    Google Scholar 

  34. M. Broué, G. Malle, R. Rouquier, Complex reflection groups, braid groups, Hecke algebras. J. Reine Angew. Math. 500 (1998), 127–190.

    MathSciNet  MATH  Google Scholar 

  35. D. Buchsbaum, D. Eisenbud, What annihilates a module? J. Algebra 47 (1977), no. 2, 231–243.

    Article  MathSciNet  MATH  Google Scholar 

  36. N. Budur, On Hodge spectrum and multiplier ideals. Math. Ann. 327 (2003), no. 2, 257–270.

    Article  MathSciNet  MATH  Google Scholar 

  37. N. Budur, Unitary local systems, multiplier ideals, and polynomial periodicity of Hodge numbers. Adv. Math. 221 (2009), no. 1, 217–250.

    Article  MathSciNet  MATH  Google Scholar 

  38. N. Budur, Bernstein-Sato ideals and local systems. Ann. Inst. Fourier (Grenoble) 65 (2015), no. 2, 549–603.

    Article  MathSciNet  MATH  Google Scholar 

  39. P. Cassou-Nogués, A. Libgober, Multivariable Hodge theoretical invariants of germs of plane curves. J. Knot Theory Ramifications 20 (2011), no. 6, 787–805.

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Cassou-Nogués, A. Libgober, Multivariable Hodge theoretical invariants of germs of plane curves. II. Valuation theory in interaction, 82–135, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2014.

    Google Scholar 

  41. S. E. Cappell, J. L. Shaneson, Singular spaces, characteristic classes, and intersection homology, Ann. of Math. 134 (1991).

    Google Scholar 

  42. F. Catanese, On a problem of Chisini. Duke Math. J. 53 (1986), no. 1, 33–42.

    Article  MathSciNet  MATH  Google Scholar 

  43. F. Catanese, C. Ciliberto, On the irregularity of cyclic coverings of algebraic surfaces. Geometry of complex projective varieties (Cetraro, 1990), 89–115, Sem. Conf., 9, Mediterranean, Rende, 1993.

    Google Scholar 

  44. J. I. Cogolludo Agustín, V. Florens, Twisted Alexander polynomials of plane algebraic curves. J. Lond. Math. Soc. (2) 76 (2007), no. 1, 105–121.

    Google Scholar 

  45. Topology of algebraic varieties and singularities. Papers from the Conference on Topology of Algebraic Varieties, in honor of Anatoly Libgober’s 60th birthday, held in Jaca, June 22–26, 2009. Edited by José Ignacio Cogolludo-Agustín and Eriko Hironaka. Contemporary Mathematics, 538. American Mathematical Society, Providence, RI; Real Sociedad Matematica Espanola, Madrid, 2011.

    Google Scholar 

  46. J. I. Cogolludo and A. Libgober, Mordell-Weil groups of elliptic threefolds and the Alexander module of plane curves. J. Reine Angew. Math. 697 (2014), 15–55.

    MathSciNet  MATH  Google Scholar 

  47. J. I. Cogolludo, A. Libgober, Free quotients of fundamental groups of smooth quasi-projective varieties, arxiv:1904.10852.

  48. R. Cretois, L. Lang, The vanishing cycles of curves in toric surfaces I. Compos. Math. 154 (2018), no. 8, 1659–1697.

    Article  MathSciNet  MATH  Google Scholar 

  49. J. Davis, F. P. Kirk, Lecture notes in algebraic topology. Graduate Studies in Mathematics, 35. American Mathematical Society, Providence, RI, 2001.

    Google Scholar 

  50. A. Degtyarev, On deformations of singular plane sextics. J. Algebraic Geom. 17 (2008), no. 1, 101–135.

    Article  MathSciNet  MATH  Google Scholar 

  51. A. Degtyarev, Oka’s conjecture on irreducible plane sextics. J. Lond. Math. Soc. (2) 78 (2008), no. 2, 329–351.

    Google Scholar 

  52. A. Degtyarev, On plane sextics with double singular points. Pacific J. Math. 265 (2013), no. 2, 327–348.

    Article  MathSciNet  MATH  Google Scholar 

  53. A. Degtyarev, Dihedral coverings of trigonal curves. Indiana Univ. Math. J. 61 (2012), no. 3, 901–938.

    Article  MathSciNet  MATH  Google Scholar 

  54. A. Degtyarev, Topology of algebraic curves. An approach via dessins d’enfants. De Gruyter Studies in Mathematics, 44. Walter de Gruyter and Co., Berlin, 2012.

    Google Scholar 

  55. A. Degtyarev, Hurwitz equivalence of braid monodromies and extremal elliptic surfaces. Proc. Lond. Math. Soc. (3) 103 (2011), no. 6, 1083–1120.

    Google Scholar 

  56. A. Degtyarev, The fundamental group of a generalized trigonal curve. Osaka J. Math. 48 (2011), no. 3, 749–782.

    MathSciNet  MATH  Google Scholar 

  57. A. Degtyarev, Topology of plane algebraic curves: the algebraic approach. Topology of algebraic varieties and singularities, 137–161, Contemp. Math., 538, Amer. Math. Soc., Providence, RI, 2011.

    Google Scholar 

  58. A. Degtyarev, Classical Zariski pairs. J. Singul. 2 (2010), 51–55.

    Google Scholar 

  59. A. Degtyarev Plane sextics with a type E8 singular point. Tohoku Math. J. (2) 62 (2010), no. 3, 329–355.

    Google Scholar 

  60. A. Degtyarev, Plane sextics via dessins d’enfants. Geom. Topol. 14 (2010), no. 1, 393–433.

    Article  MathSciNet  MATH  Google Scholar 

  61. A. Degtyarev, Zariski k-plets via dessins d’enfants. Comment. Math. Helv. 84 (2009), no. 3, 639–671.

    Article  MathSciNet  MATH  Google Scholar 

  62. A. Degtyarev, A divisibility theorem for the Alexander polynomial of a plane algebraic curve. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280 (2001), Geom. i Topol. 7, 146–156, 300; translation in J. Math. Sci. (N.Y.) 119 (2004), no. 2, 205–210.

    Google Scholar 

  63. A. Degtyarev, Quintics in \({ CP}^2\) with nonabelian fundamental group. (Russian) Algebra i Analiz 11 (1999), no. 5, 130–151; translation in St. Petersburg Math. J. 11 (2000), no. 5, 809–826.

    Google Scholar 

  64. A. Degtyarev, I. Isotopic classification of complex plane projective curves of degree 5. Algebra i Analiz 1 (1989), no. 4, 78–101; translation in Leningrad Math. J. 1 (1990), no. 4, 881–904.

    Google Scholar 

  65. A. Degtyarev, On the Artal-Carmona-Cogolludo construction, J. Knot Theory Ramifications 23 (2014), no. 5.

    Google Scholar 

  66. P. Deligne, Le groupe fondamental du complément d’une courbe plane n’ayant que des points doubles ordinaires est abelien (d’apres W. Fulton). Bourbaki Seminar, Vol. 1979/80, pp. 1–10, Lecture Notes in Math., 842, Springer, Berlin-New York, 1981.

    Google Scholar 

  67. P. Deligne, Equations differentielles a points singuliers reguliers. Lecture Notes in Mathematics, Vol. 163. Springer-Verlag, Berlin-New York, 1970.

    Google Scholar 

  68. P. Deligne, Theorie de Hodge. II. Inst. Hautes Etudes Sci. Publ. Math. No. 40 (1971), 5–57.

    Google Scholar 

  69. P. Deligne, Theorie de Hodge. III. Inst. Hautes Etudes Sci. Publ. Math. No. 44 (1974), 5–77.

    Google Scholar 

  70. G. Denham, A.Suciu, Multinets, parallel connections, and Milnor fibrations of arrangements. Proc. Lond. Math. Soc. (3) 108 (2014), no. 6, 1435–1470.

    Google Scholar 

  71. G. Denham, A. Suciu, S. Yuzvinsky, Abelian duality and propagation of resonance. Selecta Math. (N.S.) 23 (2017), no. 4, 2331–2367.

    Google Scholar 

  72. G. Dethloff, S. Orevkov, M. Zaidenberg, Plane curves with a big fundamental group of the complement, Voronezh Winter Mathematical Schools, 63–84, Amer. Math. Soc. Transl. Ser. 2, 184, Adv. Math. Sci., 37, Amer. Math. Soc., Providence, RI, 1998.

    Google Scholar 

  73. A. Dimca, Singularities and topology of hypersurfaces. Universitext. Springer-Verlag, New York, 1992.

    Book  MATH  Google Scholar 

  74. A. Dimca, Hyperplane arrangements. An introduction. Universitext. Springer, 2017.

    Book  MATH  Google Scholar 

  75. A. Dimca, L. Maxim, Multivariable Alexander invariants of hypersurface complements. Trans. Amer. Math. Soc. 359 (2007), no. 7, 3505–3528.

    Article  MathSciNet  MATH  Google Scholar 

  76. Dimca, A., Suciu, A.: Which 3-manifold groups are Kähler groups? J. Eur. Math. Soc. 11(3), 521–528 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  77. A. Dimca, S. Papadima, A. Suciu, Alexander I Quasi-Kähler groups, 3-manifold groups, and formality. Math. Z. 268 (2011), no. 1–2, 169–186.

    Article  MathSciNet  MATH  Google Scholar 

  78. I. Dolgachev, A. Libgober, On the fundamental group of the complement to a discriminant variety. Algebraic geometry (Chicago, Ill., 1980), pp. 1–25, Lecture Notes in Math., 862, Springer, Berlin-New York, 1981.

    Google Scholar 

  79. W. Ebeling, Distinguished bases and monodromy of complex hypersurface singularities. Handbook of Geometry and Topology of Singularities, 2020. p. 427–466.

    Google Scholar 

  80. M. Eliyahu, D. Garber, M. Teicher, A conjugation-free geometric presentation of fundamental groups of arrangements. Manuscripta Math. 133 (2010), no. 1–2, 247–271.

    Article  MathSciNet  MATH  Google Scholar 

  81. D. Eisenbud, Commutative algebra. With a view toward algebraic geometry. Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 1995.

    Google Scholar 

  82. D. Eisenbud, S. Popescu, S. Yuzvinsky, Hyperplane arrangement cohomology and monomials in the exterior algebra. Trans. Am. Math. Soc. 355(11), 4365–4383 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  83. H. Esnault, Fibre de Milnor d’un cone sur une courbe plane singuliére. Invent. Math. 68 (1982), no. 3, 477–496.

    Article  MathSciNet  MATH  Google Scholar 

  84. H. Esnault, E. Viehweg, Lectures on vanishing theorems. DMV Seminar, 20. Birkhäuser Verlag, Basel, 1992.

    Google Scholar 

  85. A. Esterov, L. Lang, Braid monodromy of univariate fewnomials, arXiv:2001.01634.

  86. M. Falk, S. Yuzvinsky, Multinets, resonance varieties, and pencils of plane curves. Compos. Math. 143 (4), 1069–1088 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  87. K. M. Fan, Direct product of free groups as the fundamental group of the complement of a union of lines. Michigan Math. J. 44 (1997), no. 2, 283–291.

    Article  MathSciNet  MATH  Google Scholar 

  88. B. Farb, D. Margalit, A primer on mapping class groups. Princeton Mathematical Series, 49. Princeton University Press, Princeton, NJ, 2012.

    Google Scholar 

  89. Fei Ye, Classification of moduli spaces of arrangements of nine projective lines. Pacific J. Math. 265 (2013), no. 1, 243–256.

    Article  MathSciNet  MATH  Google Scholar 

  90. R. H. Fox, A quick trip through knot theory. 1962 Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) pp. 120–167 Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  91. S. Friedl, A. Suciu, Kähler groups, quasi-projective groups and 3-manifold groups. J. Lond. Math. Soc. (2) 89 (2014), no. 1, 151–168.

    Google Scholar 

  92. T. Fujita, On the topology of noncomplete algebraic surfaces. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), no. 3, 503–566.

    Google Scholar 

  93. W. Fulton, On the fundamental group of the complement of a node curve. Ann. of Math. (2) 111 (1980), no. 2, 407–409.

    Google Scholar 

  94. W. Fulton, On the topology of algebraic varieties. Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 15–46, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987.

    Google Scholar 

  95. C. Galati, On the number of moduli of plane sextics with six cusps. Ann. Mat. Pura Appl. (4) 188 (2009), no. 2, 359–368.

    Google Scholar 

  96. C. Galindo, F. Hernando, F. Monserrat, The log-canonical threshold of a plane curve. Math. Proc. Cambridge Philos. Soc. 160 (2016), no. 3, 513–535.

    Article  MathSciNet  MATH  Google Scholar 

  97. M. Golla, L. Starkston, The symplectic isotopy problem for rational cuspidal curves. arXiv:1907.06787.

  98. J. González-Meneses, Basic results on braid groups, Annales Mathématiques Blaise Pascal, Volume 18 (2011) no. 1, p. 15–59.

    Article  MathSciNet  MATH  Google Scholar 

  99. M. González-Villa, A. Libgober, L.Maxim, Motivic infinite cyclic covers. Adv. Math. 298 (2016), 413–447.

    Article  MathSciNet  MATH  Google Scholar 

  100. M. Goresky, R. MacPherson, Stratified Morse theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 14. Springer-Verlag, Berlin, 1988.

    Google Scholar 

  101. H. Grauert, R. Remmert, Coherent analytic sheaves. Grundlehren der Mathematischen Wissenschaften, 265. Springer-Verlag, Berlin, 1984.

    Google Scholar 

  102. D. Greb, S. Kebekus, S. J. Kovacs, T. Peternell. Differential forms on log canonical spaces. Inst. Hautes Etudes Sci. Publ. Math, 114(1), 87–169, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  103. M. Green, R. Lazarsfeld, Higher obstructions to deforming cohomology groups of line bundles. J. Amer. Math. Soc. 4 (1991), no. 1, 87–103.

    Article  MathSciNet  MATH  Google Scholar 

  104. Revêtements \(\hat{{\rm E}}\)tales et Groupe Fondamental, Lecture Notes in Mathematics, 224, Springer-Verlag, 1971, by Alexander Grothendieck et al. Updating remarks by Michel Raynaud.

    Google Scholar 

  105. G. M. Greuel, C. Lossen, E. Shustin, Singular algebraic curves. With an appendix by Oleg Viro. Springer Monographs in Mathematics. Springer, Cham, 2018.

    Book  MATH  Google Scholar 

  106. G. M. Greuel, Deformations and Smoothings of Singularities, Handbook of Geometry and Topology of Singularities, 2020. p. 369–426.

    Google Scholar 

  107. B. Guerville-Ballé, An arithmetic Zariski 4-tuple of twelve lines. Geom. Topol. 20 (2016), no. 1, 537–553.

    Article  MathSciNet  MATH  Google Scholar 

  108. B. Guerville-Ballé, J. Viu-Sos, Configurations of points and topology of real line arrangements. Math. Ann. 374 (2019), no. 1–2, 1–35.

    Article  MathSciNet  MATH  Google Scholar 

  109. A. Gyoja, Bernstein-Sato’s polynomial for several analytic functions, J. Math. Kyoto Univ. 33(2) (1993) 399–411.

    MathSciNet  MATH  Google Scholar 

  110. R. Hain, Monodromy of codimension 1 subfamilies of universal curves. Duke Math. J. 161 (2012), no. 7, 1351–1378.

    Article  MathSciNet  MATH  Google Scholar 

  111. J. Harris, On the Severi problem, Invent. Math. 84 (1986), 445–461.

    Article  MathSciNet  MATH  Google Scholar 

  112. R. Harris, The kernel of the monodromy of the universal family of degree d smooth plane curves. arxiv 1904.10355.

    Google Scholar 

  113. R. Hartshone, Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.

    Google Scholar 

  114. H. Hamm, Le Dung Trang, Un theoreme du type de Lefschetz. C. R. Acad. Sci. Paris Ser. A-B 272 (1971), A946–A949.

    Google Scholar 

  115. A. Hatcher, Algebraic topology. Cambridge University Press, Cambridge, 2002.

    MATH  Google Scholar 

  116. E. Hironaka, Abelian coverings of the complex projective plane branched along configurations of real lines. Mem. Amer. Math. Soc. 105 (1993), no. 502.

    Google Scholar 

  117. E. Hironaka, Alexander stratifications of character varieties. Ann. Inst. Fourier (Grenoble) 47 (1997), no. 2, 555–583.

    Article  MathSciNet  MATH  Google Scholar 

  118. F. Hirzebruch, Arrangements of lines and algebraic surfaces. Arithmetic and geometry, Vol. II, 113–140, Progr. Math., 36, Birkhäuser, Boston, Mass., 1983.

    Google Scholar 

  119. M. Ishida, The irregularities of Hirzebruch’s examples of surfaces of general type with \(c^2_1=3c_2\). Math. Ann. 262 (1983), no. 3, 407–420.

    Article  MathSciNet  MATH  Google Scholar 

  120. M. Kapovich and J. J. Millson, Inst. Hautes Études Sci. Publ. Math. No. 88 (1998), 5–95 (1999); C. R. Acad. Sci. Paris Sér. I Math. 325(8), 1997, pp. 871–876.

    Google Scholar 

  121. M. Kashiwara, “B-functions and holonomic systems. Rationality of roots of B-functions”, Invent. Math. 38 (1976/77), no. 1, p. 33–53.

    Google Scholar 

  122. A. Kawauchi, A survey of knot theory. Burkhauser, 1990.

    Google Scholar 

  123. P. Kirk, C. Livingston, Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology 38 (1999), no. 3, 635–661.

    Google Scholar 

  124. D. Kotschick, Kählerian three-manifold groups, Math. Res. Lett. 20 (2013), no. 3, 521–525.

    Google Scholar 

  125. Vik. S. Kulikov, On Chisini’s conjecture, Izv. Ross. Akad. Nauk Ser. Mat. 63:6 (1999), 83–116.

    Google Scholar 

  126. B. Lasell, Complex local systems and morphisms of varieties. Compositio Math. 98 (1995), no. 2, 141–166.

    Google Scholar 

  127. R. Lazarsfeld, Positivity in algebraic geometry. vol I and, vol. II. Classical setting: line bundles and linear series. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 48. Springer-Verlag, Berlin, 2004.

    Google Scholar 

  128. Lê Dũng Tráng, Sur les noeuds algébriques. Compositio Math. 25 (1972), 281–321.

    Google Scholar 

  129. A. Libgober, Alexander polynomial of plane algebraic curves and cyclic multiple planes. Duke Math. J. 49 (1982), no. 4, 833–851.

    Google Scholar 

  130. A. Libgober, Alexander invariants of plane algebraic curves. Singularities, Part 2 (Arcata, Calif., 1981), 135–143, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983.

    Google Scholar 

  131. A. Libgober, Fundamental groups of the complements to plane singular curves. Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 29–45, Proc. Sympos. Pure Math., 46, Part 2, Amer. Math. Soc., Providence, RI, 1987.

    Google Scholar 

  132. A. Libgober, On the homology of finite abelian coverings. Topology Appl. 43 (1992), no. 2, 157–166.

    Google Scholar 

  133. A. Libgober, Groups which cannot be realized as fundamental groups of the complements to hypersurfaces in \({ C}^N\). Algebraic geometry and its applications (West Lafayette, IN, 1990), 203–207, Springer, New York, 1994.

    Google Scholar 

  134. A. Libgober, Homotopy groups of the complements to singular hypersurfaces. II. Ann. of Math. (2) 139 (1994), no. 1, 117–144.

    Google Scholar 

  135. A. Libgober, On the homotopy type of the complement to plane algebraic curves. J. Reine Angew. Math. 367 (1986), 103–114.

    Google Scholar 

  136. A. Libgober, S. Yuzvinsky, Cohomology of the Orlik-Solomon algebras and local systems. Compositio Math. 121 (2000), no. 3, 337–361.

    Google Scholar 

  137. A. Libgober, Characteristic varieties of algebraic curves. Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001), 215–254, NATO Sci. Ser. II Math. Phys. Chem., 36, Kluwer Acad. Publ., Dordrecht, 2001.

    Google Scholar 

  138. A. Libgober, Hodge decomposition of Alexander invariants. Manuscripta Math. 107 (2002), no. 2, 251–269.

    Google Scholar 

  139. A. Libgober, Eigenvalues for the monodromy of the Milnor fibers of arrangements. Trends in singularities, 141–150, Trends Math., Birkhäuser, Basel, 2002.

    Google Scholar 

  140. A. Libgober, Isolated non-normal crossings. Real and complex singularities, 145–160, Contemp. Math., 354, Amer. Math. Soc., Providence, RI, 2004.

    Google Scholar 

  141. A. Libgober, Homotopy groups of complements to ample divisors. (English summary) Singularity theory and its applications, 179–204, Adv. Stud. Pure Math., 43, Math. Soc. Japan, Tokyo, 2006.

    Google Scholar 

  142. A. Libgober, Lectures on topology of complements and fundamental groups. Singularity theory, 71–137, World Sci. Publ., Hackensack, NJ, 2007.

    Google Scholar 

  143. A. Libgober, Non vanishing loci of Hodge numbers of local systems. Manuscripta Math. 128 (2009), no. 1, 1–31.

    Google Scholar 

  144. A. Libgober, Development of the theory of Alexander invariants in algebraic geometry. Topology of algebraic varieties and singularities, 3–17, Contemp. Math., 538, Amer. Math. Soc., Providence, RI, 2011.

    Google Scholar 

  145. A. Libgober, M. Mustata, Sequences of LCT-polytopes. Math. Res. Lett. 18 (2011), no. 4, 733–746.

    Google Scholar 

  146. A. Libgober, On Mordell-Weil groups of isotrivial abelian varieties over function fields. Math. Ann. 357 (2013), no. 2, 605–629.

    Google Scholar 

  147. C. Liedtke, Fundamental groups of Galois closures of generic projections. Trans. Amer. Math. Soc. 362 (2010), no. 4, 2167–2188.

    Google Scholar 

  148. Y. Liu, Nearby cycles and Alexander modules of hypersurface complements. Adv. Math. 291 (2016), 330–361.

    Google Scholar 

  149. Y. Liu, L. Maxim, B. Wang, Mellin transformation, propagation, and abelian duality spaces. Adv. Math. 335 (2018), 231–260.

    Google Scholar 

  150. Y. Liu, L. Maxim, B. Wang, Perverse sheaves on semi-abelian varieties-a survey of properties and applications, arXiv:1902.05430.

  151. Y. Liu and L. Maxim, Reidemeister torsion, peripheral complex and Alexander polynomials of hypersurface complements. Algebr. Geom. Topol. 15 (2015), no. 5, 2757–2787.

    Google Scholar 

  152. F. Loeser, M. Vaquié, Le polynôme d’Alexander d’une courbe plane projective. Topology 29 (1990), no. 2, 163–173.

    Google Scholar 

  153. M. Lonne, Fundamental groups of projective discriminant complements. Duke Math. J. 150 (2009), no. 2, 357–405.

    Google Scholar 

  154. M. Lonne, M. Penegini, On asymptotic bounds for the number of irreducible components of the moduli space of surfaces of general type II. Doc. Math. 21 (2016), 197–204.

    Google Scholar 

  155. B. Malgrange, Polynômes de Bernstein-Sato et cohomologie evanescente, in Analysis and topology on singular spaces, II, III (Luminy, 1981), Asterisque, vol. 101, Soc. Math. France, Paris, 1983, p. 243–267.

    Google Scholar 

  156. G. Malle, On the distribution of Galois groups. J. Number Theory 92 (2002), no. 2, 315–329.

    Google Scholar 

  157. M. A. Marco Buzunáriz, A description of the resonance variety of a line combinatorics via combinatorial pencils. Graphs Combin. 25 (2009), no. 4, 469–488.

    Google Scholar 

  158. L. Maxim, Intersection homology and Alexander modules of hypersurface complements. Comment. Math. Helv. 81 (2006), no. 1, 123–155.

    Google Scholar 

  159. L. Maxim, Intersection Homology and Perverse Sheaves with Applications to Singularity Theory. Graduate Text in Mathenmatics, 218, Springer, 2019.

    Google Scholar 

  160. H. Maynadier, Polynomes de Bernstein-Sato associes a une intersection complète quasi-homogene á singularite isolee. Bull. Soc. Math. France 125 (1997), no. 4, 547–571.

    Google Scholar 

  161. J. Milnor, Infinite cyclic coverings. 1968 Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967) pp. 115–133 Prindle, Weber and Schmidt, Boston, Mass.

    Google Scholar 

  162. J. Milnor, A duality theorem for Reidemeister torsion. Ann. of Math. (2) 76 (1962), 137–147.

    Google Scholar 

  163. J. Milnor, Singular points of complex hypersurfaces. Annals of Mathematics Studies, No. 61 Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo 1968.

    Google Scholar 

  164. B. Moishezon, Stable branch curves and braid monodromies. Algebraic geometry (Chicago, Ill., 1980), pp. 107–192, Lecture Notes in Math., 862, Springer, Berlin-New York, 1981.

    Google Scholar 

  165. B. Moishezon. The arithmetic of braids and a statement of Chisini. Geometric topology (Haifa, 1992), 151–175, Contemp. Math., 164, Amer. Math. Soc., Providence, RI, 1994.

    Google Scholar 

  166. B. Moishezon, M. Teicher, Simply-connected algebraic surfaces of positive index. Invent. Math. 89 (1987), no. 3, 601–643 and also B. Moishezon, M. Teicher, Galois coveringsin the theory of algebraic surfaces, Proc. Symp. Pure Math. 46 (1987), 47–65.

    Google Scholar 

  167. D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity. Inst. Hautes Etudes Sci. Publ. Math. No. 9 (1961), 5–22.

    Google Scholar 

  168. D. Mumford, Appendix 2 to Chapter VIII in [221].

    Google Scholar 

  169. A. Nadel, Multiplier ideal sheaves and Kahler-Einstein metrics of positive scalar curvature. Ann. of Math. (2) 132 (1990), no. 3, 549–596.

    Google Scholar 

  170. D. Naie, The irregularity of cyclic multiple planes after Zariski. Enseign. Math. (2) 53 (2007), no. 3–4, 265–305.

    Google Scholar 

  171. D. Naie, Mixed multiplier ideals and the irregularity of abelian coverings of smooth projective surfaces. Expo. Math. 31 (2013), no. 1, 40–72.

    Google Scholar 

  172. M. Namba, H. Tsuchihashi, On the fundamental groups of Galois covering spaces of the projective plane. Geom. Dedicata 105 (2004), 85–105.

    Google Scholar 

  173. S. Nazir, M. Yoshinaga, On the connectivity of the realization spaces of line arrangements. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), no. 4, 921–937.

    Google Scholar 

  174. M. Nori, Zariski’s conjecture and related problems. Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 305–344.

    Google Scholar 

  175. M. Oka, A survey on Alexander polynomials of plane curves. Singularités Franco-Japonaises, 209–232, Sémin. Congr., 10, Soc. Math. France, Paris, 2005.

    Google Scholar 

  176. A. Ozguner, Classical Zariski Pairs with nodes, Master Thesis, Bilkent University, 2007.

    Google Scholar 

  177. S. Papadima, A. Suciu, Bieri-Neumann-Strebel-Renz invariants and homology jumping loci. Proc. Lond. Math. Soc. (3) 100 (2010), no. 3, 795–834.

    Google Scholar 

  178. R. Pardini, Abelian covers of algebraic varieties. J. Reine Angew. Math. 417 (1991), 191–213.

    Google Scholar 

  179. J.V. Pereira, S. Yuzvinsky, Completely reducible hypersurfaces in a pencil. Adv. Math. 219 (2008), no. 2, 672–688.

    Google Scholar 

  180. C. Peters, J. Steenbrink, Mixed Hodge structures. Ergebnisse der Mathematik und ihrer Grenzgebiete. 52. Springer-Verlag, Berlin, 2008.

    Google Scholar 

  181. H. Popp, Fundamentalgruppen algebraischer Mannigfaltigkeiten. Lecture Notes in Mathematics, Vol. 176 Springer-Verlag, Berlin-New York 1970.

    Google Scholar 

  182. A. Robb, M. Teicher, Applications of braid group techniques to the decomposition of moduli spaces, new examples. Special issue on braid groups and related topics (Jerusalem, 1995). Topology Appl. 78 (1997), no. 1–2, 143–151.

    Google Scholar 

  183. X. Roulleau, G. Urzúa, Chern slopes of simply connected complex surfaces of general type are dense in [2, 3]. Ann. of Math. (2) 182 (2015), no. 1, 287–306.

    Google Scholar 

  184. W. Ruppert, Reduzibilitat ebener Kurven. J. Reine Angew. Math. 369 (1986), 167–191.

    Google Scholar 

  185. C. Sabbah, Proximite evanescente. I. La structure polaire d’un \(\cal{D}\)-module, Compositio Math. 62 (1987), no. 3, p. 283–328.

    Google Scholar 

  186. M. Saito, Mixed Hodge modules. Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333. ‘.

    Google Scholar 

  187. M. Saito, Exponents of an irreducible plane curve singularity, arXiv:math.0009133.

  188. M. Sakuma, Homology of abelian coverings of links and spatial graphs. Canad. J. Math. 47 (1995), no. 1, 201–224.

    Google Scholar 

  189. N. Salter, Monodromy and vanishing cycles in toric surfaces. Invent. Math. 216 (2019), no. 1, 153–213.

    Google Scholar 

  190. N. Salter. On the monodromy group of the family of smooth plane curves. arXiv:1610.04920.

  191. M. Salvetti, Arrangements of lines and monodromy of plane curves. Compositio Math. 68 (1988), no. 1, 103–122.

    Google Scholar 

  192. C. Schnell, An overview of Morihiko Saito’s theory of mixed Hodge modules, arXiv:1405.3096.

  193. B. Segre, Sulla Caratterizzazione delle curve di diramazione dei piani multipli generali Mem. R. Acc. d’Italia, I 4 (1930), 531.

    Google Scholar 

  194. F. Severi, Vorlesungen uber algebraische Geometrie. Johnson Pub. reprinted, 1968; 1st. ed., Leipzig 1921.

    Google Scholar 

  195. C. Simpson, Subspaces of moduli spaces of rank one local systems. Ann. Sci. Ecole Norm. Sup. (4) 26 (1993), no. 3, 361–401.

    Google Scholar 

  196. C. Simpson, Local systems on proper algebraic V-manifolds. Pure Appl. Math. Q. 7 (2011), no. 4, Special Issue: In memory of Eckart Viehweg, 1675–1759.

    Google Scholar 

  197. I. Shimada, Fundamental groups of complements to singular plane curves. Amer. J. Math. 119 (1997), no. 1, 127–157.

    Google Scholar 

  198. I. Shimada, On the commutativity of fundamental groups of complements to plane curves. Math. Proc. Cambridge Philos. Soc. 123 (1998), no. 1, 49–52.

    Google Scholar 

  199. I. Shimada, Fundamental groups of algebraic fiber spaces. Comment. Math. Helv. 78 (2003), no. 2, 335–362.

    Google Scholar 

  200. I. Shimada, Equisingular families of plane curves with many connected components, Vietnam J. Math. 31 (2003), no. 2.

    Google Scholar 

  201. I. Shimada, On arithmetic Zariski pairs in degree 6. Adv. Geom. 8 (2008), no. 2, 205–225.

    Google Scholar 

  202. I. Shimada, Topology of curves on a surface and lattice-theoretic invariants of coverings of the surface. Algebraic geometry in East Asia-Seoul 2008, 361–382, Adv. Stud. Pure Math., 60, Math. Soc. Japan, Tokyo, 2010.

    Google Scholar 

  203. I. Shimada, Lattice Zariski k-ples of plane sextic curves and Z-splitting curves for double plane sextics. Michigan Math. J. 59 (2010), no. 3, 621–665.

    Google Scholar 

  204. T. Shirane, Galois covers of graphs and embedded topology of plane curves. Topology Appl. 257 (2019), 122–143.

    Google Scholar 

  205. T. Shirane, Connected numbers and the embedded topology of plane curves. Canad. Math. Bull. 61 (2018), no. 3, 650–658.

    Google Scholar 

  206. T. Shirane, A note on splitting numbers for Galois covers and \(\pi _1\)-equivalent Zariski k-plets. Proc. Amer. Math. Soc. 145 (2017), no. 3, 1009–1017.

    Google Scholar 

  207. J. Steenbrink, Mixed Hodge structure on the vanishing cohomology. Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pp. 525–563. Sijthoff and Noordhoff, Alphen aan den Rijn, 1977.

    Google Scholar 

  208. M. Teicher, The fundamental group of a CP2 complement of a branch curve as an extension of a solvable group by a symmetric group. Math. Ann. 314 (1999), no. 1, 19–38.

    Google Scholar 

  209. M. Teicher, Braid monodromy type invariants of surfaces and 4-manifolds. Trends in singularities, 215–222, Trends Math., Birkhäuser, Basel, 2002.

    Google Scholar 

  210. K. Timmerscheidt, Mixed Hodge theory for unitary local systems. J. Reine Angew. Math. 379 (1987), 152–171.

    Google Scholar 

  211. H. Tokunaga, Dihedral coverings of algebraic surfaces and their application. Trans. Amer. Math. Soc. 352 (2000), no. 9, 4007–4017.

    Google Scholar 

  212. H. Tokunaga, Galois covers for S4 and U4 and their applications. Osaka J. Math. 39 (2002), no. 3, 621–645.

    Google Scholar 

  213. T. Urabe, Combinations of rational singularities on plane sextic curves with the sum of Milnor numbers less than sixteen. Singularities (Warsaw, 1985), 429–456, Banach Center Publ., 20, PWN, Warsaw, 1988.

    Google Scholar 

  214. E. Van Kampen, On the Fundamental Group of an Algebraic Curve. Amer. J. Math. 55 (1933), no. 1–4, 255–260.

    Google Scholar 

  215. M. Vaquié, Irregularité des revêtements cycliques des surfaces projectives non singuliéres. Amer. J. Math. 114 (1992), 1187–1199.

    Google Scholar 

  216. A. N. Varchenko, Asymptotic Hodge structure on vanishing cohomology. Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 3, 540–591.

    Google Scholar 

  217. U. Walther, Bernstein-Sato polynomial versus cohomology of the Milnor fiber for generic hyperplane arrangements. Compos. Math. 141 (2005), no. 1, 121–145.

    Google Scholar 

  218. Jin-Gen Yang, Sextic curves with simple singularities. Tohoku Math. J. (2) 48 (1996), no. 2, 203–227.

    Google Scholar 

  219. O. Zariski, On the Problem of Existence of Algebraic Functions of Two Variables Possessing a Given Branch Curve. Amer. J. Math. 51 (1929), no. 2, 305–328.

    Google Scholar 

  220. O. Zariski, A theorem on the Poincare group of an algebraic hypersurface. Ann. of Math. (2) 38 (1937), no. 1, 131–141.

    Google Scholar 

  221. O. Zariski, Algebraic surfaces. With appendices by S. S. Abhyankar, J. Lipman and D. Mumford. Preface to the appendices by Mumford. Classics in Mathematics. Springer-Verlag, Berlin, 1995.

    Google Scholar 

  222. O. Zariski, On the purity of the branch locus of algebraic functions. Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 791–796.

    Google Scholar 

  223. O. Zariski, P. Samuel, Commutative algebra. Graduate Texts in Mathematics, Vol. 29. Springer-Verlag, New York-Heidelberg, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Libgober .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Libgober, A. (2021). Complements to Ample Divisors and Singularities. In: Cisneros-Molina, J.L., Lê, D.T., Seade, J. (eds) Handbook of Geometry and Topology of Singularities II. Springer, Cham. https://doi.org/10.1007/978-3-030-78024-1_10

Download citation

Publish with us

Policies and ethics