Skip to main content
Log in

Pieri algebras for the orthogonal and symplectic groups

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study the structure of a family of algebras which encodes an iterated version of the Pieri Rule for the complex orthogonal group. In particular, we show that each of these algebras has a standard monomial basis and has a flat deformation to a Hibi algebra. There is also a parallel theory for the complex symplectic group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Alexeev and M. Brion, Toric degenerations of spherical varieties, Selecta Mathematica, New Series10 (2004), 453–478.

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, 1998, 453 pp.

  3. P. Caldero, Toric degenerations of Schubert varieties, Transformation Groups 7 (2002), 51–60.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Conca, J. Herzog and G. Valla, SAGBI basis with applications to blow-up algebras, Journal für die Reine und Angewandte Mathematik 474 (1996), 113–138.

    MathSciNet  MATH  Google Scholar 

  5. D. Cox, J. Little and D. O’shea, Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, Second edition, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997.

    Google Scholar 

  6. W. Fulton, Young Tableaux, Cambridge University Press, Cambridge, 1997.

    MATH  Google Scholar 

  7. N. Gonciulea and V. Lakshmibai, Degenerations of flag and Schubert varieties to toric varieties, Transformation Groups 1 (1996), 215–248.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Goodman and N. Wallach, Representations and Invariants of the Classical Groups, Cambridge University Press, Cambridge, 1998.

    MATH  Google Scholar 

  9. T. Hibi, Distributive lattices, affine semigroup rings and algebras with straightening laws, in Commutative Algebra and Combinatorics, Advanced Studies in Pure Mathematics, Vol. 11, 1987, pp. 93–109.

  10. R. Howe, Perspectives on invariant theory, The Schur Lectures, I. Piatetski-Shapiro and S. Gelbart (eds.), Israel Mathematical Conference Proceedings, 1995, 1–182.

  11. R. Howe, Weyl chambers and standard monomial theory for poset lattice cones, Quarterly Journal of Pure and Applied Mathematics 1 (2005) 227–239.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Howe, S. Jackson, S. T. Lee, E-C Tan and J. Willenbring, Toric degeneration of branching algebras, Advances in Mathematics 220 (2009), 1809–1841.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Howe and S. T. Lee, Bases for some reciprocity algebras I, Transactions of the American Mathematical Society 359 (2007), 4359–4387.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Howe and S. T. Lee, Bases for some reciprocity algebras II, Advances in Mathematics 206 (2006), 145–210.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Howe and S. T. Lee, Bases for some reciprocity algebras III, Compositio Mathematica 142 (2006), 1594–1614.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Howe, E-C. Tan and J. Willenbring, Reciprocity algebras and branching for classical symmetric pairs, in Groups and Analysis — the Legacy of Hermann Weyl, London Mathematical Society Lecture Note Series No. 354, Cambridge University Press, Cambridge, 2008.

    Google Scholar 

  17. R. Howe, E-C. Tan and J. Willenbring, A basis for GL n tensor product algebra, Advances in Mathematics 196 (2005), 531–564.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Kim, Standard monomial theory for flag algebras of GL(n) and Sp(2n), Journal of Algebra 320 (2008), 534–568.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Kim, Standard monomial bases and degenerations of SO(m) representations, Journal of Algebra 322 (2009), 3896–3911.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Kogan and E. Miller, Toric degeneration of Schubert varieties and Gel’fand-Tsetlin polytopes, Advances in Mathematics 193 (2005), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Lakshmibai, The Development of Standard Monomial Theory, II. A Tribute to C. S. Seshadri (Chennai, 2002), Trends in Mathematics, Birkhäuser, Basel, 2003, pp. 283–309.

    Google Scholar 

  22. C. Musili, The Development of Standard Monomial Theory. I. A Tribute to C. S. Seshadri (Chennai, 2002), Trends in Mathematics, Birkhäuser, Basel, 2003, pp. 385–420.

    Google Scholar 

  23. L. Robbiano and M. Sweedler, Subalgebra bases, in Proceedings Salvador 1988 (W. Bruns and A. Simis, eds.) Lecture Notes in Mathematics, Vol. 1430, Springer-Verlag, Berlin, 1990, pp. 61–87.

    Google Scholar 

  24. R. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, Cambridge, 1999.

    Book  MATH  Google Scholar 

  25. B. Sturmfels, Grobner Bases and Convex Polytopes, University Lecture Series, Vol. 8, American Mathematical Society, Providence, RI, 1996.

    Google Scholar 

  26. H. Weyl, The Classical Groups, Princeton University Press, Princeton, NJ, 1946.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangjib Kim.

Additional information

The second named author is partially supported by NUS grant R-146-000-110-112.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Lee, S.T. Pieri algebras for the orthogonal and symplectic groups. Isr. J. Math. 195, 215–245 (2013). https://doi.org/10.1007/s11856-012-0105-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-012-0105-1

Keywords

Navigation