Skip to main content
Log in

Toric degenerations of Schubert varieties

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

LetG be a simply connected semisimple complex algebraic group. We prove that every Schubert variety ofG has a flat degeneration into a toric variety. This provides a generalization of results of [9], [7], [6]. Our basic tool is Lusztig's canonical basis and the string parametrization of this basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Berenstein and A. Zelevinski,String bases for quantum groups of type A r, I. M. Gel'fand Seminar, 51–89, Adv. Soviet Math.16, Part 1, Amer. Math. Soc., Providence, RI, (1993).

  2. A. Berenstein and A. Zelevinski,Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math.143 (2001), 77–128.

    Google Scholar 

  3. Ph. Caldero,Générateurs du centre de U q(sl(N+1)), Bull. Sci. Math.118 (1994), 177–208.

    Google Scholar 

  4. Ph. Caldero,Eléments ad-finis de certains groupes quantiques, C. R. Acad. Sci. Paris, t.316, Serie I (1993), 327–329.

    Google Scholar 

  5. R. Chirivi,LS Algebras and applications to Schubert varieties, Transformation Groups5 (2000), No. 3, 245–264.

    Google Scholar 

  6. R. Dehy,Polytopes associated to Demazure modules of symmetrizable Kac-Moody algebras of rank two, J. Algebra228 (2000), No. 1, 60–90.

    Google Scholar 

  7. R. Dehy, R. W. T. Yu,Lattice polytopes associated to certain Demazure modules of sl n+1, J. Algebr. Comb.10 (1999), No. 2, 149–172.

    Google Scholar 

  8. R. Dehy, R. W. T. Yu,Degenerations of Schubert varieties of SL(n)/B to toric varities, ArXiv: math. RT/0012124.

  9. N. Gonciulea, V. Lakshmibai,Degenerations of flag and Schubert varieties to toric varieties, Transformation Groups1 (1996), No. 3, 215–248.

    Google Scholar 

  10. J. C. Jantzen,Lectures on Quantum Groups, Graduate Studies in Mathematics6, Providence, Amer. Math. Soc., 1996, pp. 266.

    Google Scholar 

  11. M. Kashiwara,On Crystal bases, Canad. Math. Soc., Confer. Proc.16 (1995), 155–195.

    Google Scholar 

  12. P. Littelmann,Cones, crystals, and patterns, Transformation Groups3 (1998), No. 2, 145–179.

    Google Scholar 

  13. G. Lusztig,Introduction to Quantum Groups, Progress in Math.110, Birkhäuser, 1993.

  14. G. Lusztig,Problems on canonical bases, in: W. J. Haboush, et al. (ed.),Algebraic Groups and Their Generalizations: Quantum and Infinite-Dimensional Methods, Proc. Symp. Pure Math.56 (1994), Pt. 2, 169–176.

  15. M. Reineke,Multiplicative properties of dual canonical bases of quantum groups, J. Algebra211 (1999), 134–149.

    Google Scholar 

  16. M. Rosso,Analogues de la forme de Killing et du théorème de Harish-Chandra pour les groupes quantiques, Ann. Sci. Ec. Norm. Sup.23 (1990), 445–467.

    Google Scholar 

  17. T. Tanisaki,Killing forms, Harish-Chandra isomorphisms, and universal R-matrices for quantum algebras, Int. J. Mod. Phys. A7 (1992), Suppl. 1B, 941–961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the EC TMR network “Algebraic Lie Representations”, contract No. ERB FMTX-CT97-0100.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caldero, P. Toric degenerations of Schubert varieties. Transformation Groups 7, 51–60 (2002). https://doi.org/10.1007/BF01253464

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01253464

Keywords

Navigation