Skip to main content
Log in

Weak containment in the space of actions of a free group

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

It is shown that the translation action of the free group with n generators on its profinite completion is the maximum, in the sense of weak containment, measure preserving action of this group. Using also a result of Abért-Nikolov this is used to give a new proof of Gaboriau’s theorem that the cost of this group is equal to n. A similar maximality result is proved for generalized shift actions. Finally a study is initiated of the class of residually finite, countable groups for which the finite actions are dense in the space of measure preserving actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abért and N. Nikolov, Rank gradient, cost of groups and the rank versus Heegard genus problem, arXiv:math/0701361v3.

  2. M. Abért and B. Weiss, Bernoulli actions are weakly contained in any free action, arXiv:1103.1063v1.

  3. M. B. Bekka and P. de la Harpe, Irreducibility of unitary group representations and reproducing kernel Hilbert spaces, Expositiones Mathematicae 21 (2003), 115–149.

    Article  MathSciNet  MATH  Google Scholar 

  4. I. Chifan and A. Ioana, Ergodic subequivalence relations induced by a Bernoulli action, Geometric and Functional Analysis 20 (2010), 53–67.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology and von Neumann algebras, I, Transactions of the American Mathematical Society 234 (1977), 289–324.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Gaboriau, Coût des relations d’equivalence et des groupes, Inventiones Mathematicae 139 (2000), 41–98.

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Glasner and N. Monod, Amenable actions, free products and a fixed point property, The Bulletin of the London Mathematical Society 39 (2007), 138–150.

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Glasner, J.-P. Thouvenot and B. Weiss, Every countable group has the weak Rokhlin property, The Bulletin of the London Mathematical Society 38 (2006), 932–936.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. I. Grigorchuk and V. V. Nekrashevych, Amenable actions of nonamenable groups, Journal of Mathematical Sciences (New York) 140 (2007), 391–397.

    Article  MathSciNet  Google Scholar 

  10. G. Hjorth, A converse to Dye’s Theorem, Transactions of the American Mathematical Society 357 (2002), 3083–3103.

    Article  MathSciNet  Google Scholar 

  11. G. Hjorth, Mixing actions of groups with the Haagerup approximation property, Fundamenta Mathematicae 203 (2009), 47–56.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Ioana, Orbit inequivalent actions for groups containing a copy of2, arXiv:math/0701027v2, 2007.

  13. A. Ioana, Relative property (T) for the subequivalence relations induced by the actions of SL 2(ℤ) on2, Advances in Mathematics 224 (2010), 1589–1617.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Ioana, J. Peterson and S. Popa, Amalgamated free products of ω-rigid factors and calculation of their symmetry groups, Acta Mathematica 200 (2008), 85–153.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. S. Kechris, Unitary representations and modular actions, Journal of Mathematical Sciences (New York) 140 (2007), 398–425.

    Article  MathSciNet  Google Scholar 

  16. A. S. Kechris, Global Aspects of Ergodic Group Actions, Mathematical Surveys and Monographs, 160, American Mathematical Society, Providence, RI, 2010.

    MATH  Google Scholar 

  17. A. S. Kechris and B. Miller, Topics in Orbit Equivalence, Lecture Notes in Mathematics 1852, Springer, Berlin, 2004.

    Book  MATH  Google Scholar 

  18. A. S. Kechris and T. Tsankov, Amenable actions and almost invariant sets, Proceedings of the American Mathematical Society 136 (2007), 687–697.

    Article  MathSciNet  Google Scholar 

  19. A. Lubotzky and Y. Shalom, Finite representations in the unitary dual and Ramanujan groups, Contemporary Mathematics 347 (2004), 173–189.

    Article  MathSciNet  Google Scholar 

  20. A. Lubotzky and A. Zuk, On property (τ), preprint, 2003 (posted in http://www.ma.huji.ac.il/~alexlub/, 2003).

  21. R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, Berlin, 2001.

    MATH  Google Scholar 

  22. N. Ozawa, An example of a solid von Neumann algebra, Hokkaido Mathematical Journal 38 (2009), 557–561.

    MathSciNet  MATH  Google Scholar 

  23. E. K. van Douwen, Measures invariant under actions of F 2, Topology and its Applications 34 (1990), 53–68.

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Yoshizawa, Some remarks on unitary representations of the free group, Osaka Mathematical Journal 3 (1951), 55–63.

    MathSciNet  MATH  Google Scholar 

  25. R. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, Basel, 1984.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander S. Kechris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kechris, A.S. Weak containment in the space of actions of a free group. Isr. J. Math. 189, 461–507 (2012). https://doi.org/10.1007/s11856-011-0182-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-011-0182-6

Keywords

Navigation