Skip to main content
Log in

Amenable actions of nonamenable groups

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We present two methods of constructing amenable (in the sense of Greenleaf) actions of nonamenable groups. In the first part of the paper, we construct a class of faithful transitive amenable actions of the free group using Schreier graphs. In the second part, we show that every finitely generated residually finite group can be embedded into a bigger residually finite group, which acts level-transitively on a locally finite rooted tree, so that the induced action on the boundary of the tree is amenable on every orbit. Bibliography: 25 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Bartholdi, R. I. Grigorchuk, and Z. Šunik, “Branch groups,” in: Handbook of Algebra, Vol. 3, North-Holland, Amsterdam (2003), pp. 989–1112.

    Google Scholar 

  2. L. Bartholdi, V. Kaimanovich, V. Nekrashevych, and B. Virág, “Amenability of automata groups,” Preprint (2004).

  3. L. Bartholdi and B. Virág, “Amenability via random walks,” Duke Math. J., 130, 39–56 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  4. T. Ceccherini-Silberstein, R. I. Grigorchuk, and P. de la Harpe, “Amenability and paradoxical decompositions for pseudogroups and discrete metric spaces,” Trudy Mat. Inst. Steklov., 224, 68–111 (1999).

    Google Scholar 

  5. A. Erschler, “On isoperimetric profiles of finitely generated groups,” Geom. Dedicata, 100, 157–171 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Erschler, “Boundary behaviour for groups of subexponential growth,” Ann. Math., 160, 1183–1210 (2004).

    Article  MathSciNet  Google Scholar 

  7. A. Erschler, “Piecewise automatic groups,” Preprint (2005).

  8. Y. Glasner and N. Monod, “Invariant means and generic actions,” Preprint (2005).

  9. R. I. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanskii, “Automata, dynamical systems and groups,” Proc. Steklov Inst. Math., 231, 128–203 (2000).

    MathSciNet  Google Scholar 

  10. F. P. Greenleaf, Invariant Means on Topological Groups, Van Nostrand Reinhold, New York (1969).

    MATH  Google Scholar 

  11. R. I. Grigorchuk, “Symmetrical random walks on discrete groups,” in: Multicomponent Random Systems, R. L. Dobrushin and Ya. G. Sinai (eds.), Nauka, Moscow (1978), pp. 132–152.

    Google Scholar 

  12. R. I. Grigorchuk, “Degrees of growth of finitely generated groups and the theory of invariant means,” Math. USSR Izv., 25, No. 2, 259–300 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  13. R. I. Grigorchuk, “An example of a finitely presented amenable group that does not belong to the class EG,” Mat. Sb., 189, No. 1, 79–100 (1998).

    MATH  MathSciNet  Google Scholar 

  14. R. I. Grigorchuk, “Just infinite branch groups,” in: New Horizons in pro-p Groups, Progr. Math., 184, Birkhäuser Boston, Boston (2000), pp. 121–179.

    Google Scholar 

  15. P. de la Harpe, Topics in Geometric Group Theory, University of Chicago Press, Chicago (2000).

    MATH  Google Scholar 

  16. V. Kaimanovich, “Amenability, hyperfiniteness, and isoperimetric inequalities,” C. R. Acad. Sci. Paris. Sér. I Math., 325, 999–1004 (1997).

    MATH  MathSciNet  Google Scholar 

  17. V. Kaimanovich and A. Vershik, “Random walks on discrete groups: boundary and entropy,” Ann. Prob., 11, 457–490 (1983).

    MATH  MathSciNet  Google Scholar 

  18. A. Lubotzky, “Cayley graphs: eigenvalues, expanders and random walks,” in: Surveys in Combinatorics, 1995 (Stirling), London Math. Soc. Lecture Note Ser., 218, Cambridge Univ. Press, Cambridge (1995), pp. 155–189.

    Google Scholar 

  19. N. Monod and S. Popa, “On co-amenability for groups and von Neumann algebras,” C. R. Math. Acad. Sci. Soc. R. Can., 25, 82–87 (2003).

    MATH  MathSciNet  Google Scholar 

  20. V. Nekrashevych, Self-Similar Groups, Mathematical Surveys and Monographs, 117, Amer. Math. Soc., Providence, Rhode Island (2005).

    MATH  Google Scholar 

  21. V. Nekrashevych, “Cuntz-Pimsner algebras of group actions,” J. Operator Theory, 52, 223–249 (2004).

    MathSciNet  Google Scholar 

  22. S. N. Sidki, Regular Trees and Their Automorphisms, Monografías de Matemática, 56, IMPA, Rio de Janeiro (1998).

    MATH  Google Scholar 

  23. E. K. van Douwen, “Measures invariant under actions of F 2,” Topology Appl., 34, 53–68 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Vershik, “Countable groups close to finite groups,” Appendix to the Russian translation of the book F. P. Greenleaf, Invariant Means on Topological Groups and Their Applications, Mir, Moscow (1973), pp. 112–135.

    Google Scholar 

  25. J. von Neumann, “Zur allgemeinen Theorie des Masses,” Fund. Math., 13, 73–116 (1929); Collected Works, Vol. I, Pergamon Press, New York-Oxford-London-Paris (1961), pp. 599–643.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 326, 2005, pp. 85–96.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorchuk, R., Nekrashevych, V. Amenable actions of nonamenable groups. J Math Sci 140, 391–397 (2007). https://doi.org/10.1007/s10958-007-0448-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-007-0448-z

Keywords

Navigation