Skip to main content
Log in

Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We assign to each nondegenerate Hamiltonian on a closed symplectic manifold a Floer-theoretic quantity called its “boundary depth,” and establish basic results about how the boundary depths of different Hamiltonians are related. As applications, we prove that certain Hamiltonian symplectomorphisms supported in displaceable subsets have infinitely many nontrivial geometrically distinct periodic points, and we also significantly expand the class of coisotropic submanifolds which are known to have positive displacement energy. For instance, any coisotropic submanifold of contact type (in the sense of Bolle) in any closed symplectic manifold has positive displacement energy, as does any stable coisotropic submanifold of a Stein manifold. We also show that any stable coisotropic submanifold admits a Riemannian metric that makes its characteristic foliation totally geodesic, and that this latter, weaker, condition is enough to imply positive displacement energy under certain topological hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Albers and U. Frauenfelder, Leaf-wise intersections and Rabinowitz Floer homology, Journal of Topology and Analysis 2 (2010), 77–98.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Commentarii Mathematici Helvetici 53 (1978), 174–227.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Bolle, A contact condition for p-codimensional submanifolds of a symplectic manifold (2 ≤ p ≤ n), Mathematische Zeitschrift 227 (1998), 211–230.

    Article  MathSciNet  MATH  Google Scholar 

  4. Yu. Chekanov, Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Mathematical Journal 95 (1998), 213–226.

    Article  MathSciNet  MATH  Google Scholar 

  5. O. Cornea and A. Ranicki, Rigidity and glueing for Morse and Novikov complexes, Journal of the European Mathematical Society 5 (2003), 343–394.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Dragnev, Symplectic rigidity, symplectic fixed points and global perturbations of Hamiltonian systems, Communications in Pure and Applied Mathematics 61 (2008), 346–370.

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Eliashberg, S.-S. Kim and L. Polterovich, Geometry of contact transformations and domains: orderability versus squeezing, Geometry and Topology 10 (2006), 1635–1747.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Entov and L. Polterovich, Rigid subsets of symplectic manifolds, Compositio Mathematica 145 (2009), 773–826.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Floer, Symplectic fixed points and holomorphic spheres, Communications in Mathematical Physics 120 (1989), 575–611.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Fukaya and K. Ono, Arnold conjecture and Gromov-Witten invariants, Topology 38 (1999), 933–1048.

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono,Lagrangian intersection Floer theory — anomaly and obstruction, Preprint, 2000.

  12. U. Frauenfelder and F. Schlenk, Hamiltonian dynamics on convex symplectic manifolds, Israel Journal of Mathematics 159 (2007), 1–56.

    Article  MathSciNet  MATH  Google Scholar 

  13. V. Ginzburg, Coisotropic intersections, Duke Mathematical Journal 140 (2007), 111–163.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Gluck, Dynamical behavior of geodesic fields, Lecture Notes in Mathematics 819, Springer, Berlin, 1980, pp. 190–215.

    Google Scholar 

  15. M. Gotay, On coisotropic embeddings of presymplectic manifolds, Proceedings of the American Mathematical Society 84 (1982), 111–114.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Gürel, Totally non-coisotropic displacement and its applications to Hamiltonian dynamics, Communications in Contemporary Mathematics 10 (2008), 1103–1128.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Hofer and D. Salamon, Floer homology and Novikov rings, in The Floer Memorial Volume, Progress in Mathematics 133, Birkhauser, Basel, 1995, pp. 483–524.

    MathSciNet  Google Scholar 

  18. D. Johnson and L. Whitt, Totally geodesic foliations, Journal of Differential Geometry 15 (1980), 225–235.

    MathSciNet  MATH  Google Scholar 

  19. E. Kerman, Hofer’s geometry and Floer theory under the quantum limit, International Mathematics Research Notices 2008 (2008), article ID rnm137, 36 pages.

  20. E. Kerman, Displacement energy of coisotropic submanifolds and Hofer’s geometry, The Journal of Modern Dynamics 2 (2008), 471–497.

    MathSciNet  MATH  Google Scholar 

  21. E. Kerman and F. Lalonde, Length minimizing Hamiltonian paths for symplectically aspherical manifolds, Annales de l’Institut Fourier 53 (2003), 1503–1526.

    MathSciNet  MATH  Google Scholar 

  22. F. Laudenbach and J.-C. Sikorav, Hamiltonian disjunction and limits of Lagrangian submanifolds, International Mathematics Research Notices 1994 (1994), 8 pages.

    Article  MathSciNet  Google Scholar 

  23. P. Lisca and G. Matić, Tight contact structures and Seiberg-Witten invariants, Inventiones Mathematicae 129 (1997), 509–525.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Liu and G. Tian, Floer homology and Arnold conjecture, Journal of Differential Geometry 49 (1998), 1–74.

    MathSciNet  MATH  Google Scholar 

  25. C.-M. Marle, Sous-variétés de rang constant d’une variété symplectique, in Third Schnepfenried Geometry Conference, Vol. 1 (Schnepfenried, 1982), Asterisque, 107–108 Soc. Math. France, Paris, 1983, pp. 69–86.

    Google Scholar 

  26. J. Moser, A fixed point theorem in symplectic geometry, Acta Mathematica 141 (1978), 17–34.

    Article  MathSciNet  MATH  Google Scholar 

  27. Y.-G. Oh, Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, in The Breadth of Symplectic and Poisson Geometry, Progress inMathematics 232, Birkhäuser, Boston, 2005, pp. 525–570.

    Chapter  Google Scholar 

  28. Y.-G. Oh, Spectral invariants and the length-minimizing property of Hamiltonian paths, The Asian Journal of Mathematics 9 (2005), 1–18.

    MathSciNet  MATH  Google Scholar 

  29. Y.-G. Oh, Spectral invariants, analysis of the Floer moduli space, and geometry of the Hamiltonian diffeomorphism group, Duke Mathematical Journal 130 (2005), 199–295.

    MathSciNet  MATH  Google Scholar 

  30. Y.-G. Oh, Lectures on Floer theory and spectral invariants of Hamiltonian flows, in Morse-Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, NATO Science Series II: Mathematics, Physics and Chemistry, 217, Springer, Dordrecht, 2006, pp. 321–416.

    Chapter  Google Scholar 

  31. Y.-G. Oh, Floer mini-max theory, the Cerf diagram, and the spectral invariants, Journal of the Korean Mathematical Society 46 (2009), 363–447.

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Piunikhin, D. Salamon and M. Schwarz, Symplectic Floer-Donaldson theory and quantum cohomology, in Publ. Newton. Inst. (C. B. Thomas, ed.) 8, Cambridge University Press, Cambridge, 1996, pp. 1710–200.

    Google Scholar 

  33. L. Polterovich, An obstacle to non-Lagrangian intersections, in The Floer Memorial Volume, Progress in Mathematics 133, Birkhäuser, Basel, 1995, pp. 575–586.

    Google Scholar 

  34. D. Salamon, Lectures on Floer homology, in Symplectic Geometry and Topology (Park City, Utah, 1997), American Mathematical Society, Providence, RI, 1999.

    Google Scholar 

  35. D. Salamon and E. Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Communications in Pure and Applied Mathematics 45 (1992), 1303–1360.

    Article  MathSciNet  MATH  Google Scholar 

  36. F. Schlenk, Applications of Hofer’s geometry to Hamiltonian dynamics, Commentarii Mathematici Helvetici 81 (2006), 105–121.

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific Journal of Mathematics 193 (2000), 419–461.

    Article  MathSciNet  MATH  Google Scholar 

  38. J.-C. Sikorav, Some properties of holomorphic curves in almost complex manifolds, in Holomorphic Curves in Symplectic Geometry, Progress in Mathematics 117, Birkhäuser, Basel, 1993, pp. 165–189.

    Google Scholar 

  39. D. Sullivan, A foliation by geodesics is characterized by having no tangent homologies, The Journal of Pure and Applied Algebra 13 (1978), 101–104.

    Article  MATH  Google Scholar 

  40. B. Tonnelier, A new condition of stability for coisotropic submanifolds, in preparation.

  41. M. Usher, Spectral numbers in Floer theories, Compositio Mathematica 144 (2008), 1581–1592.

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Usher, Floer homology in disc bundles and symplectically twisted geodesic flows, The Journal of Modern Dynamics 3 (2009), 61–101.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Usher, The sharp energy-capacity inequality, Communications in Contemporary Mathematics 12 (2010), 457–473.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Yorke, Periods of periodic solutions and the Lipschitz constant, Proceedings of the American Mathematical Society 22 (1969), 509–512.

    Article  MathSciNet  MATH  Google Scholar 

  45. F. Ziltener, Coisotropic submanifolds, leafwise fixed points, and presymplectic embeddings, The Journal of Symplectic Geometry 8 (2010), 95–118.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Usher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usher, M. Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds. Isr. J. Math. 184, 1–57 (2011). https://doi.org/10.1007/s11856-011-0058-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-011-0058-9

Keywords

Navigation