Skip to main content
Log in

Lyapunov exponents for products of matrices and multifractal analysis. Part II: General matrices

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We continue the study in [15, 18] on the upper Lyapunov exponents for products of matrices. Here we consider general matrices. In general, the variational formula about Lyapunov exponents we obtained in part I does not hold in this setting. In any case, we focus our interest on a special case where the matrix function M(x) takes finite values M 1, ..., M m . In this case, we prove the variational formula under an additional irreducibility condition. This extends a previous result of the author and Lau [18]. As an application, we prove a new multifractal formalism for a certain class of self-similar measures on ℝ with overlaps. More precisely, let μ be the self-similar measure on ℝ generated by a family of contractive similitudes {S j = ρx + b j } j=1 which satisfies the finite type condition. Then we can construct a family (finite or countably infinite) of closed intervals {I j } j∈Λ with disjoint interiors, such that μ is supported on ⋃ j∈Λ I j and the restricted measure \( \mu |_{I_j } \) of μ on each interval I j satisfies the complete multifractal formalism. Moreover, the dimension spectrum dim H \( E_{\mu |_{I_j } } \) (α) is independent of j.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Barreira and B. Saussol, Variational principles and mixed multifractal spectra, Transactions of the American Mathematical Society 353 (2001), 3919–3944.

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Barreira, B. Saussol and J. Schmeling, Higher-dimensional multifractal analysis, Journal des Mathématiques Pures et Appliquées 81 (2002), 67–91.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Barreira and J. Schmeling, Sets of “non-typical” points have full topological entropy and full Hausdor-dimension, Israel Journal of Mathematics 116 (2000), 29–70.

    Article  MATH  MathSciNet  Google Scholar 

  4. F. Ben Nasr, I. Bhouri and Y. Heurteaux, The validity of the multifractal formalism: results and examples, Advances in Mathematics 165 (2002), 264–284.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Billingsley, Ergodic Theory and Information, John Wiley, New York, 1965.

    MATH  Google Scholar 

  6. P. Bougerol and J. Lacroix, Products of Random Matrices with Applications to Schrödinger Operators, Birkhauser, Boston, 1985.

    MATH  Google Scholar 

  7. G. Brown, G. Michon and J. Peyrière, On the multifractal analysis of measures, Journal of Statistical Physics 66 (1992), 775–790.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Cawley and R. D. Mauldin, Multifractal decompositions of Moran fractals, Advances in Mathematics 92 (1992), 196–236.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. H. Fan and D. J. Feng, On the distribution of long-term time average on the symbolic space, Journal of Statistical Physics 99 (2000), 813–856.

    Article  MATH  MathSciNet  Google Scholar 

  10. K. J. Falconer, Fractal Geometry-Mathematical Foundations and Applications, John Wiley & Sons, Chichester, 1990.

    MATH  Google Scholar 

  11. K. J. Falconer, Techniques in fractal geometry, John Wiley & Sons, Chichester, 1997.

    MATH  Google Scholar 

  12. K. Falconer and A. Sloan, Continuity of subadditive pressure for self-affine sets, Real Analysis Exchange, to appear.

  13. K. Falconer and A. Sloan, Multifractal analysis of Lyapunov exponents for general linear mappings, preprint.

  14. A. H. Fan, D. J. Feng and J. Wu, Recurrence, dimension and entropy, Journal of the London Mathematical Society 64 (2001), 229–244.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. J. Feng, Lyapunov exponents for products of matrices and multifractal analysis, Part I: Positive matrices, Israel Journal of Mathematics 138 (2003), 353–376.

    Article  MATH  MathSciNet  Google Scholar 

  16. D. J. Feng, Smoothness of the L q-spectrum of self-similar measures with overlaps, Journal of the London Mathematical Society 68 (2003), 102–118.

    Article  MATH  Google Scholar 

  17. D. J. Feng, The limited Rademacher functions and Bernoulli convolutions associated with Pisot numbers, Advances in Mathematics 195 (2005), 24–101.

    Article  MATH  MathSciNet  Google Scholar 

  18. D. J. Feng and K. S. Lau, The pressure function for products of non-negative matrices, Mathematical Research Letters 9 (2002), 363–378.

    MATH  MathSciNet  Google Scholar 

  19. D. J. Feng, K. S. Lau and X. Y. Wang, Some exceptional phenomena in multifrcatal formalism, Asian Journal of Mathematics 9 (2005), 473–488.

    MATH  MathSciNet  Google Scholar 

  20. D. J. Feng, K. S. Lau and J. Wu, Ergodic limits on the conformal repeller, Advances in Mathematics 169 (2002), 58–91.

    Article  MATH  MathSciNet  Google Scholar 

  21. D. J. Feng and E. Olivier, Multifractal analysis of the weak Gibbs measures and phase transition-application to some Bernoulli convolutions, Ergodic Theory and Dynamical Systems 23 (2003), 1751–1784.

    Article  MATH  MathSciNet  Google Scholar 

  22. U. Frisch and G. Parisi, Fully Developped Turbulence and Intermittency, Proc. Internat. School Phys. Enrico Fermi 84–88, North Holland, Amsterdam, 1985.

    Google Scholar 

  23. H. Furstenberg and H. Kesten, Products of random matrices, Annals of Mathematical Statistics 31 (1960), 457–469.

    Article  MATH  MathSciNet  Google Scholar 

  24. T. C. Hasley, M. H. Jensen, L. P. Kadanoff, I. Procaccia and B. J. Shraiman, Fractal measures and their singularities: The characterization of strange sets, Physics Review A 33 (1986), 1141–1151.

    Article  Google Scholar 

  25. Y. Heurteaux, Estimations de la dimension inférieure et de la dimension supérieure des mesures, Annales de l’Institut Henri Poincaré. Probabilités et Statistiques 34 (1998), 309–338.

    Article  MATH  MathSciNet  Google Scholar 

  26. T. Y. Hu and K. S. Lau, Multifractal structure of convolution of the Cantor measure, Advances in Applied Mathematics 27 (2001), 1–16.

    Article  MATH  MathSciNet  Google Scholar 

  27. J. E. Hutchinson, Fractals and self-similarity, Indiana University Mathematics Journal 30 (1981), 713–747.

    Article  MATH  MathSciNet  Google Scholar 

  28. K. S. Lau, Iterated function systems with overlaps and multifractal structure, in Trends in probability and related analysis (Taipei, 1998), World Sci. Publishing, River Edge, 1999, pp. 35–76.

    Google Scholar 

  29. K. S. Lau and S. M. Ngai, L q -spectrum of the Bernoulli convolution associated with the golden ratio, Studia Mathematica 131 (1998), 225–251.

    MATH  MathSciNet  Google Scholar 

  30. K. S. Lau and S. M. Ngai, Multifractal measures and a weak separation condition, Advances in Mathematics 141 (1999), 45–96.

    Article  MATH  MathSciNet  Google Scholar 

  31. K. S. Lau and X. Y. Wang, Some exceptional phenomena in multifrcatal formalism, Part I, Asian Journal of Mathematics 9 (2005), 275–294

    MATH  MathSciNet  Google Scholar 

  32. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  33. S. M. Ngai and Y. Wang, Hausdorff dimension of self-similar sets with overlaps, Journal of the London Mathematical Society 63 (2001), 655–672.

    Article  MATH  MathSciNet  Google Scholar 

  34. N. T. Nguyen, Iterated function systems of finite type and the weak separation property, Proceedings of the American Mathematical Society 130 (2002), 483–487.

    Article  MATH  MathSciNet  Google Scholar 

  35. E. Olivier, Multifractal analysis in symbolic dynamics and distribution of pointwise dimension for g-measures, Nonlinearity 12 (1999), 1571–1585.

    Article  MATH  MathSciNet  Google Scholar 

  36. E. Olivier, N. Sidorov and A. Thomas, On the Gibbs properties of Bernoulli convolutions related to β-numeration in multinacci bases, Monatshefte für Mathematik 145 (2005), 145–174.

    Article  MATH  MathSciNet  Google Scholar 

  37. L. Olsen, A multifractal formalism, Advances in Mathematics 116 (1995), 82–196.

    Article  MATH  MathSciNet  Google Scholar 

  38. L. Olsen and S. Winter, Normal and non-normal points of self-similar sets and divergence points of self-similar measures, Journal of the London Mathematical Society 67 (2003), 103–122.

    Article  MATH  MathSciNet  Google Scholar 

  39. Y. B. Pesin, Dimension Theory in Dynamical Systems, University of Chicago Press, Chicago, 1997.

    Google Scholar 

  40. Y. Pesin and H. Weiss, A multifractal analysis of Gibbs measures for conformal expanding maps and Markov Moran geometry constructions, Journal of Statistical Physics 86 (1997), 233–275.

    Article  MATH  MathSciNet  Google Scholar 

  41. J. Peyrière, A vectorial multifractal formalism, in Fractal geometry and applications: a jubilee of Benoit Mandelbrot, Part 2, 217–230, Proc. Sympos. Pure Math., 72, Part 2, Amer. Math. Soc., Providence, RI, 2004.

    Google Scholar 

  42. M. Pollicott and H. Weiss, Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation, Communications in Mathematical Physics 207 (1999), 145–171.

    Article  MATH  MathSciNet  Google Scholar 

  43. A. Porzio, On the regularity of the multifractal spectrum of Bernoulli convolutions, Journal of Statistical Physics 91 (1998), 17–29.

    Article  MATH  MathSciNet  Google Scholar 

  44. R. H. Riedi and B. B. Mandelbrot, Inversion formula for continuous multifractals, Advances in Applied Mathematics 19 (1997), 332–354.

    Article  MATH  MathSciNet  Google Scholar 

  45. E. Seneta, Non-Negative Matrices. An introduction to Theory and Applications, Halsted Press, New York, 1973.

    MATH  Google Scholar 

  46. P. Shmerkin, A modified multifractal formalism for a class of self-similar measures with overlap, Asian Journal of Mathematics 9 (2005), 323–348.

    MATH  MathSciNet  Google Scholar 

  47. F. Takens and E. Verbitskiy, On the variational principle for the toplogical entropy of certain non-compact sets, Ergodic Theory and Dynamical Systems 23 (2003), 317–348.

    Article  MATH  MathSciNet  Google Scholar 

  48. B. Testud, Phase transitions for the multifractal analysis of self-similar measures, Nonlinearity 19 (2006), 1201–1217.

    Article  MATH  MathSciNet  Google Scholar 

  49. B. Testud, Mesures quasi-Bernoulli au sens faible: résultats et exemples, Annales de l’Institut Henri Poincaré. Probabilités et Statistiques 42 (2006), 1–35.

    Article  MATH  MathSciNet  Google Scholar 

  50. L. S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory and Dynamical Systems 2 (1982), 109–124.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Jun Feng.

Additional information

The author was partially supported by the direct grant and RGC grants (Projects 400706, 401008) in CUHK, Fok Ying Tong Education Foundation and NSFC (Grant 10571100).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, DJ. Lyapunov exponents for products of matrices and multifractal analysis. Part II: General matrices. Isr. J. Math. 170, 355–394 (2009). https://doi.org/10.1007/s11856-009-0033-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-009-0033-x

Keywords

Navigation