Skip to main content
Log in

Spectral theory of the multi-frequency quasi-periodic operator with a Gevrey type perturbation

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In this paper we study the multi-frequency quasi-periodic operator with a Gevrey type perturbation. We first establish the large deviation theorem (LDT) for the multi-dimensional operator with a sub-exponential (or Gevrey) long-range hopping, and then prove the pure point spectrum property. Based on the LDT and the Aubry duality, we show the absence of a point spectrum for the 1D exponential long-range operator with a multi-frequency and a Gevrey potential. We also prove the spectrum has positive Lebesgue measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Aubry and G. André, Analyticity breaking and Anderson localization in incommensurate lattices, in Group Theoretical Methods in Physics (Proc. Eighth Internat. Colloq., Kiryat Anavim, 1979), Hilger, Bristol, 1980, pp. 133–164.

    Google Scholar 

  2. A. Avila and D. Damanik, Absolute continuity of the integrated density of states for the almost Mathieu operator with non-critical coupling, Invent. Math. 172 (2008), 439–453.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Avila, B. Fayad and R. Krikorian, A KAM scheme for SL(2, ℝ) cocycles with Liouvillean frequencies, Geom. Funct. Anal. 21 (2011), 1001–1019.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Avila and S. Jitomirskaya, The Ten Martini Problem, Ann. of Math. (2) 170 (2009), 303–342.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Avila and S. Jitomirskaya, Almost localization and almost reducibility, J. Eur. Math. Soc. (JEMS) 12 (2010), 93–131.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Avila and R. Krikorian, Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles, Ann. of Math. (2) 164 (2006), 911–940.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Avila, KAM, Lyapunov exponents and the spectral dichotomy for one-frequency Schrödinger operators, in preparation.

  8. A. Avila, Almost reducibility and absolute continuity I, arXiv:1006.0704 [math.DS].

  9. J. Avron, P. H. M. van Mouche and B. Simon, On the measure of the spectrum for the almost Mathieu operator. Comm. Math. Phys. 132 (1990), 103–118.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Avila, J. You and Q. Zhou, Sharp phase transitions for the almost Mathieu operator, Duke Math. J. 166 (2017), 2697–2718.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Bourgain and M. Goldstein, On nonperturbative localization with quasi-periodic potential, Ann. of Math. (2) 152 (2000), 835–879.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Bourgain, M. Goldstein and W. Schlag, Anderson localization for Schrödinger operators on ℤ with potentials given by the skew-shift, Comm. Math. Phys. 220 (2001), 583–621.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Bourgain, M. Goldstein and W. Schlag, Anderson localization for Schrödinger operators on Z2with quasi-periodic potential, Acta Math. 188 (2002), 41–86.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Bourgain and S. Jitomirskaya, Absolutely continuous spectrum for 1D quasiperiodic operators, Invent. Math. 148 (2002), 453–463.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Bourgain and I. Kachkovskiy, Anderson localization for two interacting quasiperiodic particles, Geom. Funct. Anal. 29 (2019), 3–43.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. Bjerklöv and R. Krikorian, Coexistence of absolutely continuous and pure point spectrum for kicked quasiperiodic potentials, J. Spectr. Theory 11 (2021), 1215–1254.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Bellissard, R. Lima and D. Testard, A metal-insulator transition for the almost Mathieu model, Comm. Math. Phys. 88 (1983), 207–234.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Bourgain, Estimates on Green’s functions, localization and the quantum kicked rotor model, Ann. of Math. (2) 156 (2002), 249–294.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Bourgain, On the spectrum of lattice Schrödinger operators with deterministic potential. II, J. Anal. Math. 88 (2002), 221–254.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Bourgain, Green’s Function Estimates for Lattice Schrödinger Operators and Applications, Princeton University Press, Princeton, NJ, 2005.

    Book  MATH  Google Scholar 

  21. J. Bourgain, Anderson localization for quasi-periodic lattice Schrödinger operators ond, d arbitrary, Geom. Funct. Anal. 17 (2007), 682–706.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Cai, The absolutely continuous spectrum of finitely differentiable quasi-periodic Schrödinger operators, arXiv:2103.15525 [math.DS].

  23. A. Cai, C. Chavaudret, J. You and Q. Zhou. Sharp Hölder continuity of the Lyapunov exponent of finitely differentiable quasi-periodic cocycles, Math. Z. 291 (2019), 931–958.

    Article  MathSciNet  MATH  Google Scholar 

  24. V. Chulaevsky and F. Delyon, Purely absolutely continuous spectrum for almost Mathieu operators, J. Statist. Phys. 55 (1989), 1279–1284.

    Article  MathSciNet  MATH  Google Scholar 

  25. V. A. Chulaevsky and E. I. Dinaburg, Methods of KAM-theory for long-range quasi-periodic operators on Zν. Pure point spectrum, Comm. Math. Phys. 153 (1993), 559–577, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Delyon, Absence of localisation in the almost Mathieu equation, J. Phys. A 20 (1987), L21–L23.

    Article  MathSciNet  MATH  Google Scholar 

  27. L. H. Eliasson, Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation, Comm. Math. Phys. 146 (1992), 447–482.

    Article  MathSciNet  MATH  Google Scholar 

  28. L. H. Eliasson, Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum, Acta Math. 179 (1997), 153–196.

    Article  MathSciNet  MATH  Google Scholar 

  29. B. Fayad and R. Krikorian, Rigidity results for quasiperiodic SL(2, ℝ)-cocycles, J. Mod. Dyn. 3 (2009), 497–510.

    MathSciNet  MATH  Google Scholar 

  30. J. Fröhlich and T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Comm. Math. Phys. 88 (1983), 151–184.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Fröhlich, T. Spencer and P. Wittwer, Localization for a class of one-dimensional quasi-periodic Schrödinger operators, Comm. Math. Phys. 132 (1990), 5–25.

    Article  MathSciNet  MATH  Google Scholar 

  32. L. Ge, J. You and Q. Zhou, Exponential dynamical localization: Criterion and Applications, Ann. Sci. Ec. Norm. Supér, to appear.

  33. S. Hadj Amor, Hölder continuity of the rotation number for quasi-periodic co-cycles in SL(2, ℝ), Comm. Math. Phys. 287 (2009), 565–588.

    Article  MathSciNet  MATH  Google Scholar 

  34. B. Helffer and J. Sjöstrand, Semiclassical analysis for Harper’s equation. III. Cantor structure of the spectrum, Mém. Soc. Math. France (N.S.) 39 (1989), 1–124.

    MathSciNet  MATH  Google Scholar 

  35. X. Hou, J. Wang and Q. Zhou, Absolutely continuous spectrum of multifrequency quasiperiodic Schrödinger operator, J. Funct. Anal. 279 (2020), Article no. 108632.

  36. S. Jitomirskaya, Anderson localization for the almost Mathieu equation: a nonperturbative proof, Comm. Math. Phys. 165 (1994), 49–57.

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Jitomirskaya, Metal-insulator transition for the almost Mathieu operator, Ann. of Math. (2) 150 (1999), 1159–1175.

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Jitomirskaya and I. Krasovsky, Continuity of the measure of the spectrum for discrete quasiperiodic operators, Math. Res. Lett. 9 (2002), 413–421.

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Jitomirskaya and I. Kachkovskiy, L2-reducibility and localization for quasiperiodic operators, Math. Res. Lett. 23 (2016), 431–444.

    Article  MathSciNet  MATH  Google Scholar 

  40. S. Jitomirskaya and I. Krasovsky, Critical almost Mathieu operator: hidden singularity, gap continuity, and the Hausdorff dimension of the spectrum, arXiv:1909.04429 [math.SP]

  41. S. Jitomirskaya and W. Liu, Universal hierarchical structure of quasiperiodic eigenfunctions, Ann. of Math. (2) 187 (2018), 721–776.

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Jitomirskaya, W. Liu and Y. Shi, Anderson localization for multi-frequency quasi-periodic operators ond, Geom. Funct. Anal. 30 (2020), 457–481.

    Article  MathSciNet  MATH  Google Scholar 

  43. W. Jian, Y. Shi and X. Yuan, Anderson localization for one-frequency quasi-periodic block operators with long-range interactions, J. Math. Phys. 60 (2019), Article no. 063504.

  44. S. Klein, Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function, J. Funct. Anal. 218 (2005), 255–292.

    Article  MathSciNet  MATH  Google Scholar 

  45. S. Klein, Localization for quasiperiodic Schrödinger operators with multivariable Gevrey potential functions, J. Spectr. Theory 4 (2014), 431–484.

    Article  MathSciNet  MATH  Google Scholar 

  46. Y. Last, Zero measure spectrum for the almost Mathieu operator, Comm. Math. Phys. 164 (1994), 421–432.

    Article  MathSciNet  MATH  Google Scholar 

  47. J. Puig, A nonperturbative Eliasson’s reducibility theorem, Nonlinearity 19 (2006), 355–376.

    Article  MathSciNet  MATH  Google Scholar 

  48. Y. Shi, Analytic solutions of nonlinear elliptic equations on rectangular tori, J. Differential Equations 267 (2019), 5576–5600.

    Article  MathSciNet  MATH  Google Scholar 

  49. Ya. G. Sinai, Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential, J. Statist. Phys. 46 (1987), 861–909.

    Article  MathSciNet  Google Scholar 

  50. T. Tao, Topics in Random Matrix Theory, American Mathematical Society, Providence, RI, 2012.

    Book  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Svetlana Jitomirskaya for reading the earlier versions of the paper and her constructive suggestions. I am very grateful to the anonymous referee for carefully reading the paper and providing many valuable comments that improved the exposition of the paper. This work was supported by National Key R&D Program of China (2021YFA1001600) and NSFC (11901010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfeng Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y. Spectral theory of the multi-frequency quasi-periodic operator with a Gevrey type perturbation. JAMA 148, 305–338 (2022). https://doi.org/10.1007/s11854-022-0230-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-022-0230-7

Navigation