Skip to main content
Log in

Solutions for a nonlocal problem involving a Hardy potential and critical growth

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In this paper, combining an approximating argument and some local Pohozaev identities, we obtain infinitely many weak solutions for a nonlocal problem with a Hardy potential and critical growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Abdelouhab, J. Bona, M. Felland and J. Saut, Nonlocal models for nonlinear dispersive waves, Phys. D 40 (1989), 360–392.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Almaraz, Convergence of scalar-flat metrics on manifolds with boundary under a Yamabe-type flow, J. Differential Equations 259 (2015), 2626–2694.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 349–381.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Applebaum, Lévy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc. 51 (2004), 1336–1347.

    MathSciNet  MATH  Google Scholar 

  5. B. Barrios, E. Colorado, A. de Pablo and U. Sßnchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), 6133–6162.

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Barrios, M. Medina and I. Peral, Some remarks on the solvability of non-local elliptic problems with the Hardy potential, Commun. Contemp. Math. 16 (2014), Article no. 1350046.

  7. W. Beckner, Pitt’s inequality and the uncertainty principle, Proc. Amer. Math. Soc. 123 (1995), 1897–1905.

    MathSciNet  MATH  Google Scholar 

  8. K. Bogdan, K. Burdzy and Z-Q. Chen, Censored stable processes, Probab. Theory Related Fields 127 (2003), 89–152.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), 39–71.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical exponent, Comm. Pure Appl. Math. 36 (1983), 437–478.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Brezis and T. Kato, Remarks on the operator with singular complex potentials, J. Math. Pures Appl. 58 (1979), 137–151.

    MathSciNet  MATH  Google Scholar 

  12. X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 23–53.

    Article  MathSciNet  MATH  Google Scholar 

  13. X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math. 224 (2010), 2052–2093.

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245–1260.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Cao and P. Han, Solutions to critical elliptic equations with multi-sigular inverse square potentials, J. Differential Equations 224 (2006), 332–372.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Cao, S. Peng and S. Yan, Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth, J. Funct. Anal. 262 (2012), 2861–2902.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Cao and S. Yan, Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential, Calc. Var. Partial Differential Equations 38 (2010), 471–501.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Comm. Partial Differential Equations 36 (2011), 1353–1384.

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Choi and J. Seok, Infinitely many solutions for semilinear nonlocal elliptic equations under noncompact settings, arXiv:1404.1132v1 [math.AP].

  20. J. Dávila, M. del Pino and Y. Sire, Nondegeneracy of the bubble in the critical case for nonlocal equations, Proc. Amer. Math. Soc. 141 (2013), 3865–3870.

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Devillanova and S. Solimini, Concentration estimates and multiple solutions to elliptic problems at critical growth, Adv. Differential Equations 7 (2002), 1257–1280.

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Elgart and B. Schlein, Mean field dynamics of boson stars, Comm. Pure Appl. Math. 60 (2007), 500–545.

    Article  MathSciNet  MATH  Google Scholar 

  24. E. B. Fabes, C. E. Kenig and R. P. Serapioni, The local regularity of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), 77–116.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Fall, Semilinear elliptic equations for the fractional Laplacian with Hardy potential, Nonlinear Anal. 193 (2020), 111311, 29pp.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), 1237–1262.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Fiscella and P. Pucci, On certain nonlocal Hardy-Sobolev critical elliptic Dirichlet problems, Adv. Differential Equations 21 (2016), 571–599.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. L. Frank, A simple proof of Hardy-Lieb-Thirring inequalities, Comm. Math. Phys. 290 (2009), 789–800.

    Article  MathSciNet  MATH  Google Scholar 

  29. R. L. Frank, E. H. Lieb and R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc. 21 (2008), 925–950.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. L. Frank and R. Seiringer, Nonlinear ground state representations and sharp Hardy inequalities, J. Funct. Anal. 255 (2008), 3407–3430.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Fröhlich and E. Lenzmann, Blow up for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math. 60 (2007), 1691–1705.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Garroni and S. Müller, Γ-limit of a phase-field model of dislocations, SIAM J. Math. Anal. 36 (2005), 1943–1964.

    Article  MathSciNet  MATH  Google Scholar 

  33. I. W. Herbst, Spectral theory of the operator\({({p^2} + {m^2})^{{1 \over 2}}} - Z{e^2}/r\), Comm. Math. Phys. 53 (1977), 285–294.

    Article  MathSciNet  MATH  Google Scholar 

  34. C. Kenig, Y. Martel and L. Robbiano, Local well-posedness and blow-upin the energy space for a class of L2critical dispersion generalized Benjamin-Ono equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), 853–887.

    Article  MathSciNet  MATH  Google Scholar 

  35. N. Landkof, Foundations of Modern Potential Theory, Springer, New York, 1972.

    Book  MATH  Google Scholar 

  36. G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations 50 (2014), 799–829.

    Article  MathSciNet  MATH  Google Scholar 

  37. G. Palatucci and A. Pisante, A gloabal compactness type result for Palais-Smale sequences in fractional Sobolev spaces, Nonlinear Anal. 117 (2015), 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  38. G. Palatucci, A. Pisante and Y. Sire, Subcritical approximation of a Yamabe-type nonlocal equation: a gamma-convergence approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 14 (2015), 819–840.

    MathSciNet  MATH  Google Scholar 

  39. P. H. Rabinowitz, Minimax Methods in Critical Points Theory With Applications to Differnetial Equations, American Mathematical Society, Providence, RI, 1986.

    Book  Google Scholar 

  40. X. Ros-Oton and J. Serra, The dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl. 101 (2014), 275–302.

    Article  MathSciNet  MATH  Google Scholar 

  41. R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), 831–855.

    Article  MathSciNet  MATH  Google Scholar 

  42. L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2007), 67–112.

    Article  MathSciNet  MATH  Google Scholar 

  43. Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal. 6 (2009), 1842–1864.

    Article  MathSciNet  MATH  Google Scholar 

  44. E. M. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space, J. Math. Mech. 7 (1958), 503–514.

    MathSciNet  MATH  Google Scholar 

  45. E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970.

    MATH  Google Scholar 

  46. P. S. Stinga and J. L. Torrea, Extension problem and Harnack’s inequality for some fractional operators, Comm. Partial Differential Equations 35 (2010), 2092–2122.

    Article  MathSciNet  MATH  Google Scholar 

  47. J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations 36 (2011), 21–41.

    Article  MathSciNet  MATH  Google Scholar 

  48. J. Tan, Positive solutions for nonlocal elliptic problems, Discrete Contin. Dyn. Syst. 33 (2013), 837–859.

    Article  MathSciNet  MATH  Google Scholar 

  49. D. Yafaev, Sharp constants in the Hardy-Rellich inequalities, J. Funct. Anal. 168 (1999), 121–144.

    Article  MathSciNet  MATH  Google Scholar 

  50. S. Yan, J. Yang and X. Yu, Equations involving fravtional Laplacian operator: Compactness and applications, J. Funct. Anal. 269 (2015), 47–79.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for insightful and helpful comments on an earlier version of the paper. This work was partially supported by NSFC (No. 12071169; No. 11601194)and the Fundamental Research Funds for the Central Universities (No. KJ02072020-0319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Yang, J. & Zhou, J. Solutions for a nonlocal problem involving a Hardy potential and critical growth. JAMA 144, 261–303 (2021). https://doi.org/10.1007/s11854-021-0181-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-021-0181-4

Navigation