Skip to main content
Log in

Discretized sum-product estimates in matrix algebras

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We generalize Bourgain’s discretized sum-product theorem to matrix algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Benoist, and N. de Saxcé, A spectral gap theorem in simple Lie groups, Invent. Math. 205 (2016), 337–361.

    Article  MathSciNet  Google Scholar 

  2. Y. Benoist, and J.-F. Quint, Mesures stationnaires et fermés invariants des espaces homogénes, Ann. of Math. (2) 174 (2011), 1111–1162.

    Article  MathSciNet  Google Scholar 

  3. J. Bourgain, On the Erdős-Volkmann and Katz-Tao ring conjectures, Geom. Funct. Anal. 13 (2003), 334–365.

    Article  MathSciNet  Google Scholar 

  4. J. Bourgain, The discretized sum-product and projection theorems, J. Anal. Math. 112 (2010), 193–236.

    Article  MathSciNet  Google Scholar 

  5. J. Bourgain, A. Furman, E. Lindenstrauss, and S. Mozes, Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus, J. Amer.Math. Soc. 24 (2011), 231–280.

    Article  MathSciNet  Google Scholar 

  6. J. Bourgain, and A. Gamburd, On the spectral gap for finitely-generated subgroups of SU(2), Invent. Math. 171 (2008), 83–121.

    Article  MathSciNet  Google Scholar 

  7. J. Bourgain, and A. Gamburd, A spectral gap theorem in SU(d), J. Eur. Math. Soc. (JEMS) 14 (2012), 1455–1511.

    Article  MathSciNet  Google Scholar 

  8. J. Bourgain, N. Katz, and T. Tao, A sum-product estimate in finite fields, and applications, Geom. Funct. Anal. 14 (2004), 27–57.

    Article  MathSciNet  Google Scholar 

  9. J. Bourgain, and P. P. Varjú, Expansion in SL d (Z/qZ), q arbitrary, Invent. Math. 188 (2012), 151–173.

    Article  MathSciNet  Google Scholar 

  10. J. Bourgain, and A. Yehudayoff, Expansion in SL2(R) and monotone expanders, Geom. Funct. Anal. 23 (2013), 1–41.

    Article  MathSciNet  Google Scholar 

  11. R. Boutonnet, A. Ioana, and A. S. Golsefidy, Local spectral gap in simple Lie groups and applications, Invent. math. 208 (2017) 715–802.

    Article  MathSciNet  Google Scholar 

  12. E. Breuillard, Lectures on Approximate Groups, IHP, Paris, February-March 2011, available at http://www.math.u-psud.fr/~breuilla/ClermontLectures.pdf.

    MATH  Google Scholar 

  13. M.-C. Chang, A polynomial bound in Freiman’s theorem, Duke Math. J. 113 (2002), 399–419.

    Article  MathSciNet  Google Scholar 

  14. M.-C. Chang, Additive and multiplicative structure in matrix spaces, Combin. Probab. Comput. 16 (2007), 219–238.

    Article  MathSciNet  Google Scholar 

  15. N. de Saxcé, A product theorem in simple Lie groups, Geom. Funct. Anal. 25 (2015), 915–941.

    Article  MathSciNet  Google Scholar 

  16. N. de Saxcé, Borelian subgroups of simple Lie groups, Duke Math. J. 166 (2017), 573–604.

    Article  MathSciNet  Google Scholar 

  17. G. A. Edgar, and C. Miller. Borel subrings of the reals, Proc. Amer. Math. Soc. 131 (2003), 1121–1129.

    Article  MathSciNet  Google Scholar 

  18. P. Erdős and E. Szemerédi, On sums and products of integers, in Studies in Pure Mathematics, Birkhäuser, Basel, 1983, pp. 213–218.

    Chapter  Google Scholar 

  19. P. Erdős and B. Volkmann, Additive Gruppen mit vorgegebener Hausdorffscher Dimension, J. Reine Angew. Math. 221 (1966), 203–208.

    MathSciNet  MATH  Google Scholar 

  20. A. Eskin, S. Mozes, and H. Oh, On uniform exponential growth for linear groups, Invent. Math. 160 (2005), 1–30.

    Article  MathSciNet  Google Scholar 

  21. W. He, Orthogonal projections of discretized sets, J. Fractal Geom., to appear.

  22. H. A. Helfgott, Growth and generation in SL2(Z/pZ), Ann. of Math. (2) 167 (208), 601-623.

  23. N. H. Katz, and T. Tao, Some connections between Falconer’s distance set conjecture and sets of Furstenburg type, New York J.Math. 7 (2001), 149–187.

    MathSciNet  MATH  Google Scholar 

  24. S. Lang, Algebra, Springer-Verlag, New York, 2002.

    Book  Google Scholar 

  25. E. Lindenstrauss, and N. de Saxcé, Hausdorff dimension and subgroups of SU(2), Israel J. Math. 209 (2015), 335–354.

    Article  MathSciNet  Google Scholar 

  26. S. Lojasiewicz, Ensembles semi-analytiques, notes from a course given in Orsay, 2006, available at https://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf.

    MATH  Google Scholar 

  27. G. Petridis, New proofs of Pl¨unnecke-type estimates for product sets in groups, Combinatorica, 32 (2012), 721–733.

    Article  MathSciNet  Google Scholar 

  28. R. S. Pierce, Associative Algebras, Springer-Verlag, New York-Berlin, 1982.

    Book  Google Scholar 

  29. J.-P. Serre, Applications algébriques de la cohomologie des groupes. ii: théorie des algébres simples, in Séminaire Henri Cartan, 1950/51, Exp. 6, Secrétariat mathématique, Paris, 1950/1951, pp. 1–9.

    Google Scholar 

  30. T. Tao, The sum-product phenomenon in arbitrary rings, Contrib. Discrete Math. 4 (2009), 59–82.

    MathSciNet  MATH  Google Scholar 

  31. T. Tao, and V. H. Vu, Additive Combinatorics, Cambridge University Press, Cambridge, 2010.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weikun He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W. Discretized sum-product estimates in matrix algebras. JAMA 139, 637–676 (2019). https://doi.org/10.1007/s11854-019-0071-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-019-0071-1

Navigation