Skip to main content
Log in

Γ-convergence of the energy functionals for the variable exponent p(·)-Laplacian and stability of the minimizers with respect to integrability

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We investigate the non-homogeneous modular Dirichlet problem Δ p (·)u(x) = f (x) (where Δ p (·)u(x) = div(|∇u|p(x-2)u(x)) from the functional analytic point of view and we prove the stability of the solutions \({\left( {{u_{{p_i}}}} \right)_i}\) of the equation \({\Delta _{{p_i}\left( \cdot \right)}}{u_{{p_i}\left( \cdot \right)}} = f\) as p i (·) → q(·) via Gamma-convergence of sequence of appropriate functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

    MATH  Google Scholar 

  2. W. Arendt and S. Monniaux, Domain perturbation for the first eigenvalue of the Dirichlet Schrödinger operator, Oper. Theory Adv. Appl. 78 (1995), 9–19.

    MATH  Google Scholar 

  3. E. Azroul, A. Barbara, and M. Rhoudaf, On some nonhomogeneous nonlinear elliptic equations with nonstandard growth arising in image processing, 1st Spring School on Numerical Methods for Partial Differential Equations, Tetouan, Morocco, 2010.

    Google Scholar 

  4. A. Braides, Local Minimization, Variational Evolution and Γ-Convergence, Springer, Cham, 2014.

    Book  MATH  Google Scholar 

  5. Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), 1383–1406.

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Chen, S. Levine, and M. Rao, Functionals with p(x)-growth in image processing, Duquesne University, Department of Mathematics and Computer Science Technical Report 2004-01, available at www.mathcs.duq.edu/˜sel/CLR05SIAPfinal.pdf.

  7. B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin, 1989.

    Book  MATH  Google Scholar 

  8. G. Dal Maso, An Introduction to Γ-Convergence, Birkäuser Boston, Boston, MA, 1993.

    Book  MATH  Google Scholar 

  9. L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, 2011.

    Book  MATH  Google Scholar 

  10. G. Dinca and P. Matei, Geometry of Sobolev spaces with variable exponent: Smoothness and uniform convexity, C. R. Math. Acad. Sci. Ser. I 347 (2009), 885–889.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Dinca and P. Matei, Geometry of Sobolev spaces with variable exponent and and a generalization of the p-Laplacian, Anal. Appl. 7 (2009), 373–390.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. E. Edmunds, J. Lang, and O. Méndez, Differential Operators on Spaces of Variable Integrability, World Scientific Publishing Co., Hackensack, NJ, 2014.

    Book  MATH  Google Scholar 

  13. D. E. Edmunds, J. Lang, and A. Nekvinda, Some s−numbers of an integral operator of Hardy type on L p(·) spaces, J. Funct. Anal. 257 (2009), 219–242.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Eleuteri, P. Harjulehto, and T. Lukkari, Global regularity and stability of solutions to elliptic equations with nonstandard growth, Complex Var. Elliptic Equ. 56 (2011), 599–622.

    Article  MathSciNet  MATH  Google Scholar 

  15. X. Fan and Q. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843–1852.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Harjulehto, P. Hästö, and V. Latvala, Minimizer of the variable exponent, non-uniformly convex Dirichlet energy, J. Math. Pures Appl. (9) 89 (2008), 174–197.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, Amer. Math. Soc., Providence, RI, 1994.

    Book  MATH  Google Scholar 

  18. O. Kováčik and J. Rákosník, On spaces L p(x)(Ω) and W k,p(x) (Ω), Czechoslovak Math. J. 41 (116) (1991), 592–618.

    MathSciNet  MATH  Google Scholar 

  19. J. Lang and O. Méndez, Modular eigenvalues of the Dirichlet p(·)-Laplacian and their stability, Spectral Theory, Function Spaces and Inequalities, Birkhäuser/Springer Basel AG, Basel, 2012, pp. 125–137.

    Book  MATH  Google Scholar 

  20. J. Lang and O. Méndez, Convergence properties of modular eigenfunctions for the p(·)-Laplacian, Nonlinear Anal. 104 (2014), 156–170.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Lindqvist, ∇u p−2u) = f with varying p, J. Math. Anal. Appl. 127 (1987), 93–102.

  22. J. Lukeš, L. Pick, and D. Pokorný, On geometric properties of the spaces Lp(x), Rev. Mat. Complut. 24 (2011), 115–130.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1997.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Lang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, J., Méndez, O. Γ-convergence of the energy functionals for the variable exponent p(·)-Laplacian and stability of the minimizers with respect to integrability. JAMA 134, 575–596 (2018). https://doi.org/10.1007/s11854-018-0018-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-018-0018-y

Navigation