Skip to main content
Log in

A dynamical system approach to Heisenberg uniqueness pairs

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Let Λ be a set of lines in R2 that intersect at the origin. For a smooth curve Γ ⊂ R2, we denote by AC(Γ) the subset of finite measures on Γ that are absolutely continuous with respect to arc length on Γ. For μAC(Γ), \(\hat \mu \) denotes the Fourier transform of μ. Following Hedenmalm and Montes-Rodríguez, we say that (Γ,Λ) is a Heisenberg uniqueness pair if μAC(Γ) is such that \(\hat \mu \) = 0 on Λ implies μ = 0. The aim of this paper is to provide new tools to establish this property. To do so, we reformulate the fact that \(\hat \mu \) vanishes on Λ in terms of an invariance property of μ induced by Λ. This leads us to a dynamical system on Γ generated by Λ. In many cases, the investigation of this dynamical system allows us to establish that (Γ,Λ) is a Heisenberg uniqueness pair. This way we both unify proofs of known cases (circle, parabola, hyperbola) and obtain many new examples. This method also gives a better geometric intuition as to why (Γ,Λ) is a Heisenberg uniqueness pair. As a side result, we also give the first instance of a positive result in the classical Cramér-Wold theorem where finitely many projections suffice to characterize a measure (under strong support constraints).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bélisle, J.-C. Massé, and Th. Ransford, When is a probability measure determined by infinitely many projections, Ann. Probab. 25 (1997), 767–786.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Benedicks, On Fourier transforms of functions supported on sets of finite Lebesgue measure, J. Math. Anal. Appl. 106 (1985), 180–183.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Boman and F. Lindskog, Radon transform and Cramér-Wold theorems, J. Theor. Prob. 22 (2009), 683–710.

    Article  MATH  Google Scholar 

  4. F. Canto-Martín, H. Hedenmalm and A. Montes-Rodríguez, Perron-Frobenius operators and the Klein-Gordon equation, J. Eur. Math. Soc. (JEMS) 16 (2014), 31–66.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Cramér and H. Wold, Some theorems on distribution functions, J. London Math. Soc. 11 (1936), 290–294.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. B. Folland and A. Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl. 3 (1997), 207–238.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. G. Hahn, P. Hahn, and M. J. Klass, Pointwise translation of the Radon transform and the general central limit problem, Ann. Probab. 11 (1983), 277–301.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. G. Hahn and E. T. Quinto, Distances between measures from 1-dimensional projections as implied by continuity of the inverse Radon transform, Z. Wahrsch. Verw. Gebiete 70 (1985), 361–380.

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Havin and B. Jöricke, The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, Berlin, 1994.

    Book  MATH  Google Scholar 

  10. H. Hedenmalm and A. Montes-Rodríguez, Heisenberg uniqueness pairs and the Klein-Gordon equation, Ann. of Math. (2) 173 (2011), 1507–1527.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Herman, Mesure de Lebesgue et nombre de rotations, Geometry and Topology, Springer-Verlag, Berlin, 1977, pp. 271–293.

    Google Scholar 

  12. M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math 49 (1979), 5–233.

    Article  MATH  Google Scholar 

  13. N. Lev, Uniqueness theorems for Fourier transforms, Bull. Sci. Math. 135 (2011), 134–140.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Sjölin, Heisenberg uniqueness pairs and a theorem of Beurling and Malliavin, Bull. Sci. Math. 135 (2011), 125–133.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Sjölin, Heisenberg uniqueness pairs for the parabola, Jour. Fourier Anal. Appl. 19 (2013), 410–416.

    Article  MathSciNet  MATH  Google Scholar 

  16. J.-C. Yoccoz, Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne, Ann. Sci. École Norm. Sup. (4) 17 (1984), 333–361.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Jaming.

Additional information

The authors kindly acknowledge financial support from the French ANR programs ANR 2011 BS01 007 01 (GeMeCod), ANR-12-BS01-0001 (Aventures). This study has been carried out with financial support from the French State, managed by the French National Research Agency (ANR) in the framework of the“Investments for the Future” Programme IdEx Bordeaux - CPU (ANR-10-IDEX-03-02).

Part of this work was conducted while the first author was visiting the Erwin Schrödinger Institute, Vienna, Austria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaming, P., Kellay, K. A dynamical system approach to Heisenberg uniqueness pairs. JAMA 134, 273–301 (2018). https://doi.org/10.1007/s11854-018-0010-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-018-0010-6

Navigation