Skip to main content
Log in

An Energy Approach to Uniqueness for Higher-Order Geometric Flows

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We describe a simple, direct method to prove the uniqueness of solutions to a broad class of parabolic geometric evolution equations. Our argument, which is based on a prolongation procedure and the consideration of certain natural energy quantities, does not require the solution of any auxiliary parabolic systems. In previous work, we used a variation of this technique to give an alternative proof of the uniqueness of complete solutions to the Ricci flow of uniformly bounded curvature. Here we extend this approach to curvature flows of all orders, including the \(L^2\)-curvature flow and a class of quasilinear higher-order flows related to the obstruction tensor. We also detail its application to the fully nonlinear cross-curvature flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexakis, S.: Unique Continuation for the Vacuum Einstein Equations (2009) (preprint). arXiv:0902.1131

  2. Bell, T.: Uniqueness of Conformal Ricci Flow using Energy Methods (2013) (preprint). arXiv:1301.5052 [math.DG]

  3. Bahuaud, E., Helliwell, D.: Short-time existence for some higher-order geometric flows. Commun. Partial Differ. Equ. 36(12), 2189–2207 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bahuaud, E., Helliwell, D.: Uniqueness for Some higher-order geometric flows. Bull. Lond. Math. Soc. 47(6), 980–995 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bour, V.: Fourth Order Curvature Flows and Geometric Applications (2010) (preprint). arXiv:1012.0342 [math.DG]

  6. Buckland, J.: Short-time existence of solutions to the cross curvature flow on 3-manifolds. Proc. Am. Math. Soc. 134(6), 1803–1807 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chow, B., Hamilton, R.S.: The cross curvature flow of 3-manifolds with negative sectional curvature. Turk. J. Math. 28(1), 1–10 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Chen, B.-L., Zhu, X.-P.: Uniqueness of the Ricci flow on complete noncompact manifolds. J. Differ. Geom. 74(1), 119–154 (2006)

    MathSciNet  MATH  Google Scholar 

  9. DeTurck, D.: Deforming metrics in the direction of their Ricci tensors, improved version. In: Cao, H.-D., Chow, B., Chu, S.-C., Yau, S.-T. (eds.) Collected Papers on Ricci Flow. Internat Press, Somerville (2003)

    Google Scholar 

  10. Fefferman, C., Graham, C.R.: Conformal invariants. In: The mathematical heritage of Élie Cartan (Lyon, 1984), Astérisque, Numero Hors Serie, pp. 95–116 (1985)

  11. Giaquinta, M.: Introduction to Regularity Theory for Nonlinear Elliptic Systems. Lectures in Mathematics. ETH Zürich. Birkhäuser Verlag, Basel (1993), viii+131 pp., ISBN: 3-7643-2879-7

  12. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    MathSciNet  MATH  Google Scholar 

  13. Hamilton, R.S.: The formation of singularities in the Ricci flow. In: Hsiung, C.-C., Yau, S.-T. (eds.) Surveys in Differential Geometry, vol. II (Cambridge, MA, 1993), pp. 7–136. Int. Press, Cambridge (1995)

  14. Kotschwar, B.: An energy approach to the problem of uniqueness for the Ricci flow. Commun. Anal. Geom. 22(1), 149–176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Streets, J.D.: The gradient flow of \(\int _M|\text{ Rm }|^{2}\). J. Geom. Anal. 18(1), 249–271 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Taylor, M.E.: Partial Differential Equations I: Basic Theory, 2nd edn. Applied Mathematical Sciences, 115, Springer, New York, 2011, xxii+654 pp., ISBN: 978-1-4419-7054-1

  17. Wong, W.W.-Y., Yu, P.: On strong unique continuation of coupled Einstein metrics. Int. Math. Res. Not. 3, 544–560 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett Kotschwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotschwar, B. An Energy Approach to Uniqueness for Higher-Order Geometric Flows. J Geom Anal 26, 3344–3368 (2016). https://doi.org/10.1007/s12220-015-9670-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9670-y

Keywords

Mathematics Subject Classification

Navigation