Skip to main content
Log in

Representation of solutions of second order one-dimensional model hyperbolic equations

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We consider second order weakly hyperbolic operators. Some representation formulas are known (see [16]) for the fundamental solution of the initial value problem for the Tricomi-type equation

$$\partial _t^2u - {t^{2\ell }}\partial _x^2u = f\left( {t,x} \right)$$

. In this paper, we solve the initial value problem for

$$\partial _t^2u - {x^{2k}}\partial _x^2u = f\left( {t,x} \right)\;and\;\partial _t^2u - {e^{2kx}}\partial _x^2u = f\left( {t,x} \right)$$

. Furthermore, we solve the mixed initial boundary value problem for

$$\partial _t^2u - {t^{2\ell }}{x^{2k}}\partial _x^2u = 0$$

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physicists, sixth edition, Elsevier Academic Press, 2005.

    MATH  Google Scholar 

  2. J. Barros-Neto and I. M. Gelfand, Fundamental solutions for the Tricomi operator, Duke Math. J. 98 (1999), 465–483.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Barros-Neto and I. M. Gelfand, Fundamental solutions for the Tricomi operator. II, Duke Math. J. 111 (2002), 561–584; Correction to: ”Fundamental solutions for the Tricomi operator. II”, Duke Math. J. 117 (2003), 385–387.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Beals and Y. Kannai, Exact propagators for some degenerate hyperbolic operators, Ark. Mat. 44 (2006), 197–209.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Beals and Y. Kannai, Exact solutions and branching of singularities for some hyperbolic equations in two variables, J. Differential Equations 246 (2009), 3448–3470.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Galstian, Lp-Lq decay estimates for the wave equations with exponentially growing speed of propagation, Appl. Anal. 82 (2003), 197–214.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Galstian, T. Kinoshita, and K. Yagdjian, A note on wave equation in Einstein and de Sitter space-time, J. Math. Phys. 51 (2010), 052501, 18 pp.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Kinoshita and K. Yagdjian, On the Cauchy problem for wave equations with time-dependent coefficients, Int. J. Appl. Math. Stat. 13 (2008), 1–20.

    MathSciNet  Google Scholar 

  9. T. Nishitani, Hyperbolicity of two by two systems with two independent variables, Comm. Partial Differential Equations 23 (1998), 1061–1110.

    Article  MathSciNet  MATH  Google Scholar 

  10. O. A. Oleinik, On linear equations of second order with a non-negative characteristic form, Mat. Sb. (N.S.) 69 (111) (1966), 111–140; Transl. Amer. Math. Soc. (2) 65 (1967) 172–204.

  11. O. A. Oleinik, On the Cauchy problem for weakly hyperbolic equations, Comm. Pure Appl. Math. 23 (1970), 569–586.

    Article  MathSciNet  Google Scholar 

  12. A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, CRC Press, Boca Raton FL, 1995.

    MATH  Google Scholar 

  13. A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC, Boca Raton, Fl, 2002.

    MATH  Google Scholar 

  14. M. M. Smirnov, Equations of Mixed Type, American Mathematical Society, Providence, RI, 1978.

    Google Scholar 

  15. G. N. Watson, A Treatise on the Theory of Bessel Functions, reprint of the second edition, Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  16. K. Yagdjian, A note on the fundamental solution for the Tricomi-type equation in the hyperbolic domain, J. Differential Equations 206 (2004), 227–252.

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Yagdjian and A. Galstian, Fundamental solutions of the wave equation in Robertson-Walker spaces, J. Math. Anal. Appl. 346 (2008), 501–520.

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Yagdjian and A. Galstian, Fundamental solutions for the Klein-Gordon equation in de Sitter spacetime, Comm. Math. Phys. 285 (2009), 293–344.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anahit Galstian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galstian, A., Kinoshita, T. Representation of solutions of second order one-dimensional model hyperbolic equations. JAMA 130, 355–374 (2016). https://doi.org/10.1007/s11854-016-0040-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-016-0040-x

Navigation