Skip to main content
Log in

Fundamental Solutions for the Klein-Gordon Equation in de Sitter Spacetime

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article we construct the fundamental solutions for the Klein-Gordon equation in de Sitter spacetime. We use these fundamental solutions to represent solutions of the Cauchy problem and to prove L p − L q estimates for the solutions of the equation with and without a source term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, 55, Washington, DC: Nat. Bur. of Standords, 1964

  2. Bateman H., Erdelyi A. Higher: Transcendental Functions. Vol. 1,2. McGraw-Hill, New York (1953)

    Google Scholar 

  3. Birrell N.D., Davies P.C.W.: Quantum fields in curved space. Cambridge University Press, Cambridge, New York (1984)

    MATH  Google Scholar 

  4. Bony, J.-F., Hafner, D.: Decay and non-decay of the local energy for the wave equation in the De Sitter - Schwarzschild metric. http://arXiv.org/abs/0706.0350v1

  5. Brenner P.: On L pL q estimates for the wave-equation. Math. Zeit. 145, 251–254 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brozos-Vázquez, M., García-Río, E., Vázquez-Lorenzo, R.: Locally conformally flat multidimensional cosmological models and generalized Friedmann-Robertson-Walker spacetimes. J. Cosmol. Astropart. Phys. JCAP12 008 (2004) doi:10.1088/1475-7516/2004/12/008

  7. Chandrasekhar S.: The Mathematical Theory of Black Holes. Clarendon Press Oxford University Press, Oxford, New York (1998)

    MATH  Google Scholar 

  8. Christodoulou, D., Klainerman, S.: The global nonlinear stability of the Minkowski space. Princeton Mathematical Series, 41. Princeton, NJ: Princeton University Press, 1993

  9. Courant, R., Hilbert, D.: Methods of mathematical physics. Vol. II: Partial differential equations. New York-London: Interscience Publishers, 1962

  10. Dafermos, M., Rodnianski, I.: The wave equation on Schwarzschild-de Sitter spacetimes. http://arXiv.org/abs/0709.2766v1[ga-gc], 2007

  11. De Sitter, W.: On Einstein’s Theory of Gravitation, and its astronomical consequences.II,III. Roy. Astron. Soc. 77, 155–184 (1917); 78, 3–28 (1917)

    Google Scholar 

  12. Einstein, A.: Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Berlin: Sitzungsber Preuss. Akad. Wiss., 142–152 (1917)

  13. Finster F., Kamran N., Smoller J., Yau S.-T.: Decay of solutions of the wave equation in the Kerr geometry. Commun. Math. Phys. 264, 465–503 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  14. Friedrich, H., Rendall, A.: The Cauchy problem for the Einstein equations. Einstein’s field equations and their physical implications. Lecture Notes in Phys. 540, Berlin: Springer 2000, pp. 127–223

  15. Galstian A.: L p -L q decay estimates for the wave equations with exponentially growing speed of propagation. Appl. Anal. 82, 197–214 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Heinzle J.M., Rendall A.: Power-law inflation in spacetimes without symmetry. Commun. Math. Phys. 269, 1–15 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Hörmander, L.: The analysis of linear partial differential operators. IV. Fourier integral operators. Grundlehren der Mathematischen Wissenschaften 275. Berlin: Springer-Verlag, 1994

  18. Kronthaler, J.: The Cauchy problem for the wave equation in the Schwarzschild geometry. J. Math. Phys. 47(4), 042501, 29 pp (2006)

    Google Scholar 

  19. Littman W.: The wave operator and L p norms. J. Math. Mech. 12, 55–68 (1963)

    MATH  MathSciNet  Google Scholar 

  20. Littman W., McCarthy C., Rivière N.: The non-existence of L p estimates for certain translation-invariant operators. Studia Math. 30, 219–229 (1968)

    MATH  MathSciNet  Google Scholar 

  21. Møller C.: The theory of relativity. Clarendon Press, Oxford (1952)

    Google Scholar 

  22. Pecher H.: L p-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen.I. Math. Zeit. 150, 159–183 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  23. Peral J.C.: L p estimates for the wave equation. J. Funct. Anal. 36(1), 114–145 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  24. Racke, R.: Lectures on Nonlinear Evolution Equations. Aspects of Mathematics. Braunschweig/ Wiesbaden: Vieweg, 1992

  25. Rendall A.: Asymptotics of solutions of the Einstein equations with positive cosmological constant. Ann. Henri Poincaré 5(6), 1041–1064 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Shatah, J., Struwe, M.: Geometric wave equations. Courant Lecture Notes in Mathematics, 2. New York University, Courant Institute of Mathematical Sciences, Amer. Math. Soc. New York: Providence, RI 1998

  27. Sonego S., Faraoni V.: Huygens’ principle and characteristic propagation property for waves in curved space-times. J. Math. Phys. 33(2), 625–632 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  28. Yagdjian K.: A note on the fundamental solution for the Tricomi-type equation in the hyperbolic domain. J. Differ. Eqs. 206, 227–252 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yagdjian, K.: Global existence in the Cauchy problem for nonlinear wave equations with variable speed of propagation, New trends in the theory of hyperbolic equations, Oper. Theory Adv. Appl., 159, Basel: Birkhäuser, 2005, pp. 301–385

  30. Yagdjian K.: Global existence for the n-dimensional semilinear Tricomi-type equations. Comm. Partial Diff. Eqs. 31, 907–944 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yagdjian K.: Self-similar solutions of semilinear wave equation with variable speed of propagation. J. Math. Anal. Appl. 336, 1259–1286 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yagdjian, K., Galstian, A.: Fundamental Solutions for Wave Equation in de Sitter Model of Universe. University of Potsdam, August, Preprint 2007/06, available at http://arXiv.org/abs/0710.3878v1[math.Ap], 2007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Yagdjian.

Additional information

Communicated by G. W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yagdjian, K., Galstian, A. Fundamental Solutions for the Klein-Gordon Equation in de Sitter Spacetime. Commun. Math. Phys. 285, 293–344 (2009). https://doi.org/10.1007/s00220-008-0649-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0649-4

Keywords

Navigation