Skip to main content
Log in

Finite configurations in sparse sets

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Let E ⊆ ℝn be a closed set of Hausdorff dimension α. For m > n, let{B 1, …, B k } be n × (mn) matrices. We prove that if the system of matrices B j is non-degenerate in a suitable sense, α is sufficiently close to n, and if E supports a probability measure obeying appropriate dimensionality and Fourier decay conditions, then for a range of m depending on n and k, the set E contains a translate of a non-trivial k-point configuration {B 1 y, …, B k y}. As a consequence, we are able to establish existence of certain geometric configurations in Salem sets (such as parallelograms in ℝn and isosceles right triangles in ℝ2). This can be viewed as a multidimensional analogue of the result of [25] on 3-term arithmetic progressions in subsets of ℝ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. Behrend, On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 331–332.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Bluhm, Random recursive construction of Salem sets, Ark.Mat. 34 (1996), 51–63.

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Bluhm, On a theorem of Kaufman: Cantor-type construction of linear fractal Salem sets, Ark. Mat. 36 (1998), 307–316.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Bourgain, A Szemerédi type theorem for sets of positive density ink, Israel J.Math. 54 (1986), 307–316.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Bourgain, Construction of sets of positive measure not containing an affine image of a given infinite structure, Israel J. Math. 60 (1987), 333–344.

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Erdoan, D. Hart, and A. Iosevich, Multiparameter projection theorems with applications to sums-products and finite point configurations in the euclidean setting, in Recent Advances in Harmonic Analysis and Applications, Springer, New York, 2013, pp. 93–103.

    Google Scholar 

  7. P. Erdős, Remarks on some problems in number theory, Math. Balkanica 4 (1974), 197–202.

    MathSciNet  MATH  Google Scholar 

  8. K. J. Falconer, On a problem of Erdős on sequences and measurable sets, Proc. Amer. Math. Soc. 90 (1984), 77–78.

    MathSciNet  MATH  Google Scholar 

  9. H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations J. Analyse Math. 34 (1978), 275–291.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. T. Gowers and J. Wolf, The true complexity of a system of linear equations, Proc. Lond.Math. Soc. (3) 100 (2010), 155–176.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Grafakos, A. Greenleaf, A. Iosevich, and E. Palsson, Multilinear generalized Radon transforms and point configurations, Forum Math. 27 (2015), 2323–2360.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions Ann. of Math. (2) 167 (2008), 481–547.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Greenleaf and A. Iosevich, On triangles determined by subsets of the Euclidean plane, the associated bilinear operator and applications to discrete geometry, Anal. PDE 5 (2012), 397–409.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Greenleaf, A. Iosevich, B. Liu, and E. Palsson, A group-theoretic viewpoint on Erdős-Falconer problems and the Mattila integral, Rev. Math. Iberoam. 31 (2015), 799–810.

    Article  MathSciNet  MATH  Google Scholar 

  15. V. Harangi, T. Keleti, G. Kiss, P. Maga, A. Máthé, P. Mattila, and B. Strenner, How large dimension guarantees a given angle?, Monatsh. Math. 171 (2013), 169–187.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. D. Humke and M. Laczkovich, A visit to the Erdős problem, Proc. Amer. Math. Soc. 126 (1998), 819–822.

    Article  MathSciNet  MATH  Google Scholar 

  17. J.-P. Kahane, Sur certains ensembles de Salem, Acta Math. Acad. Sci. Hungar. 21 (1970), 87–89.

    Article  MathSciNet  MATH  Google Scholar 

  18. J.-P. Kahane, Some Random Series of Functions, second edition, Cambridge University Press, Cambridge, 1985.

    MATH  Google Scholar 

  19. R. Kaufman, On the theorem of Jarník and Besicovitch, Acta Arith. 39 (1981), 265–267.

    MathSciNet  MATH  Google Scholar 

  20. T. Keleti, A 1-dimensional subset of the reals that intersects each of its translates in at most a single point, Real Anal. Exchange 24 (1998/99), 843–844.

    MathSciNet  MATH  Google Scholar 

  21. T. Keleti, Construction of one-dimensional subsets of the reals not containing similar copies of given patterns, Anal. PDE 1 (2008), 29–33.

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. Kohayakawa, T. Łuczak, and V. Rödl, Arithmetic progressions of length three in subsets of a random set, Acta Arith. 75 (1996), 133–163.

    MathSciNet  MATH  Google Scholar 

  23. M. N. Kolountzakis, Infinite patterns that can be avoided by measure, Bull. London Math. Soc. 29 (1997), 415–424.

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Komjáth, Large sets not containing images of a given sequence, Canad. Math. Bull. 26 (1983), 41–43.

    Article  MathSciNet  MATH  Google Scholar 

  25. I. Łaba and M. Pramanik, Arithmetic progressions in sets of fractional dimension, Geom. Funct. Anal. 19 (2009), 429–456.

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Maga, Full dimensional sets without given patterns, Real Anal. Exchange 36 (2010), 79–90.

    MathSciNet  MATH  Google Scholar 

  27. A. Magyar, k-point configurations in sets of positive density ofn, Duke Math. J. 146 (2009), 1–34.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Máthé, Sets of large dimension not containing polynomial configurations, arXiv:1201.0548. v1 [math.CA].

  29. K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Salem, On singular monotonic functions whose spectrum has a given Hausdorff dimension, Ark. Mat. 1 (1951), 353–365.

    Article  MathSciNet  MATH  Google Scholar 

  31. R. Salem and D. C. Spencer, On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 561–563.

    Article  MathSciNet  MATH  Google Scholar 

  32. E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199–245.

    MathSciNet  MATH  Google Scholar 

  33. T. Tao, Arithmetic progressions and the primes, Collect. Math. (Vol. Extra) (2006), 37–88.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Chan.

Additional information

The second and third authors were supported by NSERC Discovery Grants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, V., Łaba, I. & Pramanik, M. Finite configurations in sparse sets. JAMA 128, 289–335 (2016). https://doi.org/10.1007/s11854-016-0010-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-016-0010-3

Keywords

Navigation