Skip to main content
Log in

Pleasant extensions retaining algebraic structure, II

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In this paper, we combine the general tools developed in [5] with several ideas taken from earlier work on one-dimensional nonconventional ergodic averages by Furstenberg and Weiss [17], Host and Kra [21] and Ziegler [44] to study the averages

$$\frac{1}{N}\sum\limits_{n = 1}^N {({f_1} \circ {T^{n{p_1}}}} )({f_2} \circ {T^{n{p_2}}})({f_3} \circ {T^{n{p_3}}}){\text{ }}{f_1},{f_2},{f_3} \in {L^\infty }(\mu )$$

associated to a triple of directions p 1, p 2, p 3 ∈ ℤ2 that lie in general position along with 0 ∈ ℤ2. We show how to construct a “pleasant” extension of an initiallygiven ℤ2-system for which these averages admit characteristic factors with a very concrete description, involving the same structure as for those in [2] together with two-step pro-nilsystems (reminiscent of [21] and its predecessors).

We also use this analysis to construct pleasant extensions and then prove norm convergence for the polynomial nonconventional ergodic averages

$$\frac{1}{N}\sum\limits_{n = 1}^N {({f_1} \circ T_1^{{n^2}}} )({f_2} \circ T_1^{{n^2}}T_2^n)$$

associated to two commuting transformations T 1, T 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Auslander, L. Green, and F. Hahn, Flows on Homogeneous Spaces, Princeton University Press, Princeton, N.J., 1963.

    MATH  Google Scholar 

  2. T. Austin, On the norm convergence of nonconventional ergodic averages, Ergodic Theory Dynam. Systems 30 (2009), 321–338.

    Article  MathSciNet  Google Scholar 

  3. T. Austin, Deducing the multidimensional Szemerédi theorem from an infinitary removal lemma, J. Anal. Math. 111 (2010), 131–150.

    Article  MATH  MathSciNet  Google Scholar 

  4. T. Austin, Extensions of probability-preserving systems by measurably-varying homogeneous spaces and applications, Fund. Math. 210 (2010), 133–206.

    Article  MATH  MathSciNet  Google Scholar 

  5. T. Austin, Pleasant extensions retaining algebraic structure, I, J. Anal. Math. 125 (2015), 1–36.

    Article  MathSciNet  Google Scholar 

  6. T. Austin and C. C. Moore, Continuity properties of measurable group cohomology, Math. Ann. 356 (2013), 885–937.

    Article  MATH  MathSciNet  Google Scholar 

  7. V. Bergelson and A. Leibman, A nilpotent Roth theorem, Invent. Math. 147 (2002), 429–470.

    Article  MATH  MathSciNet  Google Scholar 

  8. V. Bergelson, T. Tao, and T. Ziegler, An inverse theorem for the uniformity seminorms associated with the action of \({\text{F}}_p^\infty \), Geom. Funct. Anal. 19 (2010), 1539–1596.

    Article  MATH  MathSciNet  Google Scholar 

  9. Q. Chu, N. Frantzikinakis, and B. Host, Ergodic averages of commuting transformations with distinct degree polynomial iterates, Proc. London Math. Soc. (3) 102 (2011), 801–842.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.-P. Conze and E. Lesigne, Théorèmes ergodiques pour des mesures diagonales, Bull. Soc. Math. France 112 (1984), 143–175.

    MATH  MathSciNet  Google Scholar 

  11. J.-P. Conze and E. Lesigne. Sur un théorème ergodique pour des mesures diagonales, in Probabilités, Univ. Rennes I, Rennes, 1988, pp. 1–31.

    Google Scholar 

  12. J.-P. Conze and E. Lesigne, Sur un théorème ergodique pour des mesures diagonales. C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 491–493.

    MATH  MathSciNet  Google Scholar 

  13. N. Frantzikinakis and B. Kra, Convergence of multiple ergodic averages for some commuting transformations, Ergodic Theory Dynam. Systems 25 (2005), 799–809.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. H. Fremlin, Measure Theory, Volume 4: Topological Measure Spaces Parts I and II, Torres Fremlin, Colchester, 2006.

    Google Scholar 

  15. H. Furstenberg. Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Anal. Math. 31 (1977), 204–256.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Furstenberg and Y. Katznelson, An ergodic Szemerédi Theorem for commuting transformations, J. Anal. Math. 34 (1978), 275–291.

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Furstenberg and B. Weiss, A mean ergodic theorem for \(\frac{1}{N}\sum\nolimits_{n = 1}^N {f({T^n}x)g({T^{{n^2}}}x)} \), in Convergence in Ergodic Theory and Probability, de Gruyter, Berlin,1996, pp. 193–227.

    Google Scholar 

  18. E. Glasner, Ergodic Theory via Joinings. American Mathematical Society, Providence, RI, 2003.

    Book  MATH  Google Scholar 

  19. B. Green and T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. (2) 175 (2012), 465–540.

    Article  MATH  MathSciNet  Google Scholar 

  20. K. H. Hofmann and P. S. Mostert, Cohomology Theories for Compact Abelian Groups, Springer-Verlag, New York, 1973.

    Book  Google Scholar 

  21. B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. 161(2) (2005), 397–488.

    Article  MATH  MathSciNet  Google Scholar 

  22. B. Host and B. Kra, Analysis of two step nilsequences, Ann. Inst. Fourier (Grenoble) 58 (2008), 1407–1453.

    Article  MATH  MathSciNet  Google Scholar 

  23. B. Host and B. Kra, Uniformity seminorms on ℓ and applications, J. Anal. Math. 108 (2009), 219–276.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Leibman, Pointwise convergence of ergodic averages for polynomial actions ofd by translations on a nilmanifold, Ergodic Theory Dynam. Systems 25 (2005), 215–225.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, Ergodic Theory Dynam. Systems 25 (2005), 201–213.

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Leibman. Rational sub-nilmanifolds of a compact nilmanifold, Ergodic Theory Dynam. Systems 26 (2006), 787–798.

    Article  MATH  MathSciNet  Google Scholar 

  27. A. Leibman, Orbit of the diagonal in the power of a nilmanifold, Trans. Amer. Math. Soc. 362 (2010), 1619–1658.

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Lemańczyk, Cohomology groups, multipliers and factors in ergodic theory, Studia Math. 122 (1997), 275–288.

    MATH  MathSciNet  Google Scholar 

  29. D. Meiri, Generalized correlation sequences, Master’s thesis, Tel Aviv University; available online at http://taalul.com/David/Math/ma.pdf, 1990.

  30. D. Montgomery and L. Zippin, Topological Transformation Groups. Interscience Publishers, New York-London, 1955.

    MATH  Google Scholar 

  31. C. C. Moore, Extensions and low dimensional cohomology theory of locally compact groups. I, II, Trans. Amer. Math. Soc. 113 (1964), 40–63.

    MATH  MathSciNet  Google Scholar 

  32. C. C. Moore, Group extensions and cohomology for locally compact groups. III, Trans. Amer. Math. Soc. 221 (1976), 1–33.

    Article  MATH  MathSciNet  Google Scholar 

  33. C. C. Moore, Group extensions and cohomology for locally compact groups. IV, Trans. Amer. Math. Soc. 221 (1976), 35–58.

    Article  MATH  MathSciNet  Google Scholar 

  34. C. C. Moore and K. Schmidt, Coboundaries and homomorphisms for non-singular actions and a problem of H. Helson, Proc. London Math. Soc. (3) 40 (1980), 443–475.

    Article  MATH  MathSciNet  Google Scholar 

  35. W. Parry, Ergodic properties of affine transformations and flows on nilmanifolds, Amer. J. Math. 91 (1969), 757–771.

    Article  MATH  MathSciNet  Google Scholar 

  36. W. Parry, Dynamical systems on nilmanifolds, Bull. London Math. Soc. 2 (1970), 37–40.

    Article  MATH  MathSciNet  Google Scholar 

  37. D. J. Rudolph, Eigenfunctions of T × S and the Conze-Lesigne algebra, in Ergodic Theory and its Connections with Harmonic Analysis, Cambridge Univ. Press, Cambridge, 1995, pp. 369–432.

    Google Scholar 

  38. A. N. Starkov. Dynamical Systems on Homogeneous Spaces, American Mathematical Society, Providence, RI, 2000.

    Google Scholar 

  39. W. A. Veech, A criterion for a process to be prime, Monatsh. Math. 94 (1982), 335–341.

    Article  MATH  MathSciNet  Google Scholar 

  40. M. Walsh, Norm convergence of nilpotent ergodic averages, Ann. of Math. (2) 175 (2012), 1667–1688.

    Article  MATH  MathSciNet  Google Scholar 

  41. C. A. Weibel, An Introduction to Homological Algebra, Cambridge University Press, Cambridge, 1994.

    Book  MATH  Google Scholar 

  42. D. Wigner, Algebraic cohomology of topological groups, Trans. Amer. Math. Soc. 178 (1973), 83–93.

    Article  MATH  MathSciNet  Google Scholar 

  43. Q. Zhang, On convergence of the averages (1/N)\((1/N)\sum\nolimits_{n = 1}^N {{f_1}({R^n}x){f_2}({S^n}x){f_3}({T^n}x)} \), Monatsh. Math. 122 (1996), 275–300.

    Article  MATH  MathSciNet  Google Scholar 

  44. T. Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc. 20 (2007), 53–97.

    Article  MATH  MathSciNet  Google Scholar 

  45. R. J. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), 373–409.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Austin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Austin, T. Pleasant extensions retaining algebraic structure, II. JAMA 126, 1–111 (2015). https://doi.org/10.1007/s11854-015-0013-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-015-0013-5

Keywords

Navigation