Skip to main content
Log in

Large solutions for the elliptic 1-Laplacian with absorption

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

In this paper, we give a general condition on the absorption term of the 1-Laplace elliptic equation for the existence of suitable large solutions. This condition can be considered as the corresponding Keller-Osserman condition for the p-Laplacian, in the case p = 1. We also provide conditions that guarantee uniqueness of solutions to such problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Alter and V. Caselles, Uniqueness of the Cheeger set of a convex body, Nonlinear Anal. 70 (2009), 32–44.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Alter, V. Caselles, and A. Chambolle, A characterization of convex calibrable sets inN, Math. Ann. 332 (2005), 329–366.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Alvarado, D. Brigham, V. Maz’ya, M. Mitrea, and E. Ziadé, On the regularity of domains satisfying a uniform hour-glass condition and a sharp version of the Hopf-Oleinik boundary point principle, J. Math. Sci. (N.Y.) 176 (2011), 281–360.

    Article  MATH  MathSciNet  Google Scholar 

  4. L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York, 2000.

    MATH  Google Scholar 

  5. F. Andreu, C. Ballester, V. Caselles, and J. M. Mazón, Minimizing total variation flow, Differential Integral Equations 14 (2001), 321–360.

    MATH  MathSciNet  Google Scholar 

  6. F. Andreu, V. Caselles, and J. M. Mazón, The Dirichlet problem for the total variation flow, J. Funct. Anal. 180 (2001), 347–403.

    Article  MATH  MathSciNet  Google Scholar 

  7. F. Andreu, V. Caselles, and J. M. Mazón, Existence and uniqueness of a solution for a parabolic quasilinear problem for linear growth functionals with L 1 data, Math. Ann. 322 (2002), 139–206.

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Andreu, V. Caselles, and J. M. Mazón, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Birkhäuser Verlag, Basel, 2004.

    Book  MATH  Google Scholar 

  9. F. Andreu, A. Dall’Aglio, and S. Segura de León, Bounded solutions to the 1-Laplacian equation with a critical gradient term, Asymptot. Anal. 80 (2012), 21–43.

    MATH  MathSciNet  Google Scholar 

  10. G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4) 135 (1983), 293–318.

    Article  MATH  MathSciNet  Google Scholar 

  11. E. Barozzi, E. Gonzalez, and I. Tamanini, The mean curvature of a set of finite perimeter, Proc. Amer. Math. Soc. 99 (1987), 313–316.

    Article  MathSciNet  Google Scholar 

  12. Ph. Bénilan, L. Boccardo, T. Gallouët, R. F. Gariepy, M. Pierre, and J. L. Vazquez, An L 1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 241–273.

    MATH  MathSciNet  Google Scholar 

  13. Ph. Bénilan and M. G. Crandall, Completely accretive operators, in Semigroup Theory and Evolution Equations, Marcel Dekker, New York, 1991, pp. 41–76.

    Google Scholar 

  14. V. Caselles, A. Chambolle, and M. Novaga, Uniqueness of the Cheeger set of a convex body, Pacific J. Math. 232 (2007), 77–90.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. G. Crandall and T. M. Liggett, Generation of semigroups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265–298.

    Article  MATH  MathSciNet  Google Scholar 

  16. F. Demengel, On some nonlinear equation involving the 1-Laplacian and trace map inequalities, Nonlinear Anal. 48 (2002), 1151–1163.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. I. Díaz, M. Lazzo, and P. G. Schmidt, Large solutions for a system of elliptic equations arising from fluid dynamics, SIAM J. Math. Anal. 37 (2005), 490–513.

    Article  MATH  MathSciNet  Google Scholar 

  18. G. Diaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: existence and uniqueness, Nonlinear Anal. 20 (1993), 97–125.

    Article  MATH  MathSciNet  Google Scholar 

  19. E. B. Dynkin, A probabilistic approach to one class of nonlinear differential equations, Probab. Theory Related Fields 89 (1991), 89–115.

    Article  MATH  MathSciNet  Google Scholar 

  20. L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 1992.

    MATH  Google Scholar 

  21. J. García-Melián, J. D. Rossi, and J. C. Sabina de Lis, Large solutions to the p-Laplacian for large p, Calc. Var. Partial Differential Equations 31 (2008), 187–204.

    Article  MATH  MathSciNet  Google Scholar 

  22. F. Gladiali and G. Porru, Estimates for explosive solutions to p-Laplace equations, Progress in Partial Differential Equations, Vol. 1, Longman, Harlow, 1998, pp. 117–127.

    Google Scholar 

  23. E. H. A. Gonzalez and U. Massari, Variational mean curvatures, Rend. Sem. Mat. Univ. Politec. Torino 52 (1994), 1–28.

    MATH  MathSciNet  Google Scholar 

  24. B. Kawohl, From p-Laplace to mean curvature operator and related questions, in Progress in Partial Differential Equations: the Metz Surveys, Longman Sci. Tech., Harlow, 1991, pp. 40–56.

    Google Scholar 

  25. J. B. Keller, On solutions of Δu = f (u), Comm. Pure Appl. Math. 10 (1957), 503–510.

    Article  MATH  MathSciNet  Google Scholar 

  26. J. M. Lasry and P. -L. Lions, Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem, Math. Ann. 283 (1989), 583–630.

    Article  MATH  MathSciNet  Google Scholar 

  27. J. F. Le Gall, Probabilistic approach to a class of semilinear partial differential equations, in Perspectives in Nonlinear Partial Differential Equations, Contemp. Math. 446, Amer. Math. Soc., Providence, RI, 2007, pp. 255–272.

    Chapter  Google Scholar 

  28. F. Leoni, Nonlinear elliptic equations inN with absorbing zero order terms, Adv. Differential Equations 5 (2000), 681–722.

    MATH  MathSciNet  Google Scholar 

  29. T. Leonori and F. Petitta, Local estimates for parabolic equations with nonlinear gradient terms, Calc. Var. Partial Differential Equations 42 (2011), 153–187.

    Article  MATH  MathSciNet  Google Scholar 

  30. G. M. Lieberman, Asymptotic behavior and uniqueness of blow-up solutions of quasilinear elliptic equations, J. Anal. Math. 115 (2011), 213–249.

    Article  MathSciNet  Google Scholar 

  31. C. Loewner and L. Nirenberg, Partial differential equations invariant under conformal or projective transformations, in Contributions to Analysis, Academic Press, New York, 1974.

    Google Scholar 

  32. R. Osserman, On the inequality Δuf (u), Pacific J. Math. 7 (1957), 1641–1647.

    Article  MATH  MathSciNet  Google Scholar 

  33. M. Marcus and L. Véron, Existence and uniqueness results for large solutions of general nonlinear elliptic equations, J. Evol. Equ. 3 (2003), 637–652.

    Article  MATH  MathSciNet  Google Scholar 

  34. J. Matero, Quasilinear elliptic equations with boundary blow-up, J. Anal. Math. 69 (1996), 229–247.

    Article  MATH  MathSciNet  Google Scholar 

  35. A. Mercaldo, S. Segura de León, and C. Trombetti, On the solutions to 1-Laplacian equation with L 1 data, J. Funct. Anal. 256 (2009), 2387–2416.

    Article  MATH  MathSciNet  Google Scholar 

  36. S. Moll and F. Petitta, Large solutions for nonlinear parabolic problems without absorption terms, J. Funct. Anal. 262 (2012), 1566–1602.

    Article  MATH  MathSciNet  Google Scholar 

  37. S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, New York, 2003.

    Book  MATH  Google Scholar 

  38. S. Osher and J. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988), 12–49.

    Article  MATH  MathSciNet  Google Scholar 

  39. A. Porretta and L. Véron, Symmetry of large solutions of nonlinear elliptic equations in a ball, J. Funct. Anal. 236 (2006), 581–591.

    Article  MATH  MathSciNet  Google Scholar 

  40. G. Sapiro, Geometric Partial Differential Equations and Image Analysis, Cambridge University Press, Cambridge, 2001.

    Book  MATH  Google Scholar 

  41. G. Stampacchia, Equations elliptiques du second ordre à coefficients discontinus, Les Presses de l’ Université de Montréal, Montréal, 1966.

    MATH  Google Scholar 

  42. G. Talenti, Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl. 120 (1979), 160–184.

    Article  MathSciNet  Google Scholar 

  43. W. P. Ziemer, Weakly Differentiable Functions, Springer Verlag, New York, 1989.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Petitta.

Additional information

S. M. was partially supported by project MTM2012-31103.

F. P. was partially supported by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moll, S., Petitta, F. Large solutions for the elliptic 1-Laplacian with absorption. JAMA 125, 113–138 (2015). https://doi.org/10.1007/s11854-015-0004-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-015-0004-6

Keywords

Navigation