Skip to main content
Log in

Heat kernel bounds for elliptic partial differential operators in divergence form with Robin-type boundary conditions

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

One of the principal topics of this paper concerns the realization of self-adjoint operators L Θ,Ω in L 2(Ω; d n x)m, m, n ∈ ℕ, associated with divergence form elliptic partial differential expressions L with (nonlocal) Robin-type boundary conditions in bounded Lipschitz domains Ω ⊂ ℝn. In particular, we develop the theory in the vector-valued case and hence focus on matrix-valued differential expressions L which act as

$$Lu = - \left( {\sum\limits_{j,k = 1}^n {\partial _j } \left( {\sum\limits_{\beta = 1}^m {a_{j,k}^{\alpha ,\beta } \partial _k u_\beta } } \right)} \right)_{1 \leqslant \alpha \leqslant m} , u = \left( {u_1 , \ldots ,u_m } \right).$$

The (nonlocal) Robin-type boundary conditions are then of the form

$$v \cdot ADu + \Theta [u|_{\partial \Omega } ] = 0{\text{ on }}\partial \Omega ,$$

where Θ represents an appropriate operator acting on Sobolev spaces associated with the boundary ∂Ω of Ω, ν denotes the outward pointing normal unit vector on ∂Ω, and \(Du: = \left( {\partial _j u_\alpha } \right)_{_{1 \leqslant j \leqslant n}^{1 \leqslant \alpha \leqslant m} } .\) Assuming Θ ≥ 0 in the scalar case m = 1, we prove Gaussian heat kernel bounds for L Θ,Ω, by employing positivity preserving arguments for the associated semigroups and reducing the problem to the corresponding Gaussian heat kernel bounds for the case of Neumann boundary conditions on ∂Ω. We also discuss additional zero-order potential coefficients V and hence operators corresponding to the form sum L Θ,Ω + V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.

    MATH  Google Scholar 

  2. R. Adams and J. J. F. Fournier, Sobolev spaces, 2nd ed., Academic Press, New York, 2003.

    MATH  Google Scholar 

  3. H. Aikawa and T. Lundh, The 3G inequality for a uniformly John domain, Kodai Math. J. 28 (2005), 209–219.

    MATH  MathSciNet  Google Scholar 

  4. C. D. Aliprantis and O. Burkinshaw, Positive compact operators on Banach lattices, Math. Z. 174 (1989), 289–298.

    MathSciNet  Google Scholar 

  5. C. D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.

    MATH  Google Scholar 

  6. H. Ammari, H. Kang, and S. Kim, Sharp estimates for the Neumann functions and applications to quantitative photo-acoustic imaging in inhomogeneous media, J. Differential Equations 253 (2012), 41–72.

    MATH  MathSciNet  Google Scholar 

  7. P. R. S. Antunes, P. Freitas, and J. B. Kennedy, Asymptotic behaviour and numerical approximation of optimal eigenvalues of the Robin Laplacian, ESAIM Control Optim. Calc. Var. 19 (2013), 438–459.

    MATH  MathSciNet  Google Scholar 

  8. W. Arendt, Generators of positive semigroups, in Infinite-Dimensional Systems, Springer, Berlin, 1984, pp. 1–15.

    Google Scholar 

  9. W. Arendt, Kato’s inequality: A characterization of generators of positive semigroups, Proc. Roy. Irish Acad. 84A (1984), 155–174.

    MathSciNet  Google Scholar 

  10. W. Arendt, Resolvent positive operators, Proc. London Math. Soc. (3) 54 (1987), 321–349.

    MATH  MathSciNet  Google Scholar 

  11. W. Arendt, Semigroups and evolution equations: Functional calculus, regularity and kernel estimates, in Handbook of Differential Equations, Evolutionary Equations, Vol. 1, Elsevier, North-Holland, Amsterdam, 2004.

    Google Scholar 

  12. W. Arendt and C. J. K. Batty, Domination and ergodicity for positive semigroups, Proc. Amer. Math. Soc. 114 (1992), 743–747.

    MATH  MathSciNet  Google Scholar 

  13. W. Arendt and A. V. Bukhvalov, Integral representations of resolvents and semigroups, Forum Math. 6 (1994), 111–135.

    MATH  MathSciNet  Google Scholar 

  14. W. Arendt and M. Demuth, Hölder’s inequality for perturbations of positive semigroups by potentials, J. Math. Anal. Appl. 316 (2006), 652–663.

    MATH  MathSciNet  Google Scholar 

  15. W. Arendt and A. F. M. ter Elst, Gaussian estimates for second order elliptic operators with boundary conditions, J. Operator Theory 38 (1997), 87–130.

    MATH  MathSciNet  Google Scholar 

  16. W. Arendt and M. Warma, The Laplacian with Robin boundary conditions on arbitrary domains, Potential Anal. 19 (2003), 341–363.

    MATH  MathSciNet  Google Scholar 

  17. W. Arendt and M. Warma, Dirichlet and Neumann boundary conditions: What is in between?, J. Evol. Eq. 3 (2003), 119–135.

    MATH  MathSciNet  Google Scholar 

  18. N. Aronszajn and K. T. Smith, Characterization of positive reproducing kernels. Applications to Green’s functions, Amer. J. Math. 79 (1957), 611–622.

    MATH  MathSciNet  Google Scholar 

  19. M. S. Ashbaugh, F. Gesztesy, M. Mitrea, and G. Teschl, Spectral theory for perturbed Krein Laplacians in nonsmooth domains, Adv. Math. 223 (2010), 1372–1467.

    MATH  MathSciNet  Google Scholar 

  20. M. S. Ashbaugh, F. Gesztesy, M. Mitrea, R. Shterenberg, and G. Teschl, The Krein-von Neumann extension and its connection to an abstract buckling problem, Math. Nachr. 283 (2010), 165–179.

    MATH  MathSciNet  Google Scholar 

  21. G. Auchmuty, Steklov eigenproblems and the representation of solutions of elliptic boundary value problems, Numer. Funct. Anal. Optim. 25 (2004), 321–348.

    MATH  MathSciNet  Google Scholar 

  22. G. Auchmuty, Spectral characterization of the trace spaces H s(∂Ω), SIAM J. Math. Anal. 38 (2006), 894–905.

    MATH  MathSciNet  Google Scholar 

  23. G. Barbatis, Spectral theory of singular elliptic operators with measurable coefficients, J. Funct. Anal. 155 (1998), 125–152.

    MATH  MathSciNet  Google Scholar 

  24. G. Barbatis, V. I. Burenkov, and P. D. Lamberti, Stability estimates for resolvents, eigenvalues and eigenfunctions of elliptic operators on variable domains, in Around the Research of Vladimir Maz’ya. II. Partial Differential Equations, Springer, New York, 2010, pp. 23–60.

    Google Scholar 

  25. R. F. Bass, K. Burdzy, and Z.-Q. Chen On the Robin problem in fractal domains, Proc. London Math. Soc. (3) 96 (2008), 273–311.

    MATH  MathSciNet  Google Scholar 

  26. J. Behrndt, M. Langer, I. Lobanov, V. Lotoreichik, and I. Yu. Popov, A remark on Schatten-von Neumann properties of resolvent differences of generalized Robin Laplacians on bounded domains, J. Math. Anal. Appl. 371 (2010), 750–758.

    MATH  MathSciNet  Google Scholar 

  27. C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988.

    MATH  Google Scholar 

  28. O. Bratteli, A. Kishimoto, and D. W. Robinson, Positivity and monotonicity properties of C 0-semigroups. I, Commun. Math. Phys. 75 (1980), 67–84.

    MATH  MathSciNet  Google Scholar 

  29. O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics 2. Equilibrium States. Models in Quantum Statistical Mechanics, 2nd ed., 2nd printing, Springer, New York, 2002.

    Google Scholar 

  30. D. Bucur and D. Daners, An alternative approach to the Faber-Krahn inequality for Robin problems, Calc. Var. Partial Differential Equations 37 (2010), 75–86.

    MATH  MathSciNet  Google Scholar 

  31. V. I. Burenkov and E. B. Davies, Spectral stability of the Neumann Laplacian, J. Differential Equations 186 (2002), 485–508.

    MATH  MathSciNet  Google Scholar 

  32. V. I. Burenkov, P. D. Lamberti, and M. Lanza de Cristoforis, Spectral stability of nonnegative self-adjoint operators, J. Math. Sci. (N.Y.) 149 (2008), 1417–1452.

    MathSciNet  Google Scholar 

  33. V. I. Burenkov and M. Lanza de Cristoforis, Spectral stability of the Robin Laplacian, Proc. Steklov Inst. Math. 260 (2008), 68–89.

    MATH  MathSciNet  Google Scholar 

  34. S. Cardanobile and D. Mugnolo, Parabolic systems with coupled boundary conditions, J. Differential Equations 247 (2009), 1229–1248.

    MATH  MathSciNet  Google Scholar 

  35. Z.Q. Chen, R. J. Williams, and Z. Zhao, A Sobolev inequality and Neumann heat kernel estimate for unbounded domains, Math. Res. Lett. 1 (1994), 177–184.

    MATH  MathSciNet  Google Scholar 

  36. J. K. Choi and S. Kim, Neumann functions for second order elliptic systems with measurable coefficients, Trans. Amer. Math. Soc. 365 (2013), 6283–6307.

    MATH  MathSciNet  Google Scholar 

  37. K. L. Chung and Z. Zhao, From Brownian Motion to Schrödinger’s Equation, Springer, Berlin, 1995.

    MATH  Google Scholar 

  38. M. Cranston, E. Fabes, and Z. Zhao, Conditional gauge and potential theory for the Schrödinger operator, Trans. Amer. Math. Soc. 307 (1998), 171–194.

    MathSciNet  Google Scholar 

  39. E. N. Dancer and D. Daners, Domain perturbation for elliptic equations subject to Robin boundary conditions, J. Differential Equations 138 (1997), 86–132.

    MATH  MathSciNet  Google Scholar 

  40. D. Daners, Robin boundary value problems on arbitrary domains, Trans. Amer. Math. Soc. 352 (2000), 4207–4236.

    MATH  MathSciNet  Google Scholar 

  41. D. Daners, Heat kernel bounds for operators with boundary conditions, Math. Nachr. 217 (2000), 13–41.

    MATH  MathSciNet  Google Scholar 

  42. D. Daners, A Faber-Krahn inequality for Robin problems in any space dimension, Math. Ann. 335 (2006), 767–785.

    MATH  MathSciNet  Google Scholar 

  43. D. Daners, Inverse positivity for general Robin problems on Lipschitz domains, Arch. Mat. 92 (2009), 57–69.

    MATH  MathSciNet  Google Scholar 

  44. D. Daners and J. Kennedy, Uniqueness in the Faber-Krahn inequality for Robin problems, SIAM J. Math. Anal. 39 (2007), 1191–1207.

    MATH  MathSciNet  Google Scholar 

  45. D. Daners and J. B. Kennedy, On the asymptotic behaviour of the eigenvalues of a Robin problem, Differential Integral Equations 23 (2010), 659–669.

    MATH  MathSciNet  Google Scholar 

  46. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 2, Functional and Variational Methods, Springer, Berlin, 2000.

    Google Scholar 

  47. E. B. Davies, Properties of the Green’s functions of some Schrödinger operators, J. London Math. Soc. (2) 7 (1973), 483–491.

    Google Scholar 

  48. E. B. Davies, One-Parameter Semigroups, Academic Press, London, 1980.

    MATH  Google Scholar 

  49. E. B. Davies, Some norm bounds and quadratic form inequalities for Schrödinger operators. II, J. Operator Theory 12 (1984), 177–196.

    MATH  MathSciNet  Google Scholar 

  50. E. B. Davies, Explicit constants for Gaussian upper bounds on heat kernels, Amer. J. Math. 109 (1987), 319–334.

    MATH  MathSciNet  Google Scholar 

  51. E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, Cambridge, 1989.

    MATH  Google Scholar 

  52. E. B. Davies, Linear Operators and their Spectra, Cambridge Univ. Press, Cambridge, 2007.

    MATH  Google Scholar 

  53. M. Demuth, Spectral consequences due to general Hölder’s inequalities and domination of semigroups, in Recent Advances in Operator Theory and Applications, Birkhäuser, Basel, 2008, pp. 125–140.

    Google Scholar 

  54. P. G. Dodds and D. H. Fremlin, Compact operators in Banach lattices, Israel J.Math. 34 (1979), 287–320.

    MATH  MathSciNet  Google Scholar 

  55. X. T. Duong and A. McIntosh, Functional calculi of second-order elliptic partial differential operatots with bounded measurable coefficients, J. Geom. Anal. 6 (1996), 181–205.

    MATH  MathSciNet  Google Scholar 

  56. D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1989.

    MATH  Google Scholar 

  57. R. E. Edwards, Functional Analysis. Theory and Applications, Dover, New York, 1995.

    Google Scholar 

  58. W. G. Faris, Quadratic forms and essential self-adjointness, Helv. Phys. Acta 45 (1972), 1074–1088.

    MathSciNet  Google Scholar 

  59. W. G. Faris, Self-Adjoint Operators, Lecture Notes in Mathematics 433, Springer, Berlin, 1975.

    MATH  Google Scholar 

  60. W. Faris and B. Simon, Degenerate and non-degenerate ground states for Schrödinger operators, Duke Math. J. 42 (1975), 559–567.

    MATH  MathSciNet  Google Scholar 

  61. W. Feller, Generalized second order differential operators and their lateral conditions, Illinois J. Math. 1 (1957), 459–504 (1957).

    MATH  MathSciNet  Google Scholar 

  62. N. Filonov, On an inequality between Dirichlet and Neumann eigenvalues for the Laplace operator, St. Petersburg Math. J. 16 (2005), 413–416.

    MATH  MathSciNet  Google Scholar 

  63. R. L. Frank, Remarks on eigenvalue estimates and semigroup domination, in Spectral and Scattering Theory for Quantum Magnetic Systems, Contemp. Math. 500, Amer. Math. Soc., Providence, RI, 2009, pp. 63–86.

    Google Scholar 

  64. G. Frobenius, Über Matrizen aus positiven Elementen, Sitzungsber. König. Preuss. Akad.Wiss., Berlin, 1908, pp. 471–476.

    Google Scholar 

  65. G. Frobenius, Über Matrizen aus positiven Elementen, Sitzungsber. König. Preuss. Akad.Wiss., Berlin, 1909, pp. 514–518.

    Google Scholar 

  66. G. Frobenius, Über Matrizen aus nicht negativen Elementen, Sitzungsber. König. Preuss. Akad. Wiss., Berlin, 1912, pp. 456–477.

    Google Scholar 

  67. M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, 2nd revised and extended ed., de Gruyter, Berlin, 2011.

    MATH  Google Scholar 

  68. F. Gesztesy, On non-degenerate ground states for Schrödinger operators, Rep. Math. Phys. 20 (1984), 93–109.

    MATH  MathSciNet  Google Scholar 

  69. F. Gesztesy, Y. Latushkin, M. Mitrea, and M. Zinchenko, Nonselfadjoint operators, infinite determinants, and some applications, Russ. J. Math. Phys. 12 (2005), 443–471.

    MATH  MathSciNet  Google Scholar 

  70. F. Gesztesy and M. Mitrea, Nonlocal Robin Laplacians and some remarks on a paper by Filonov on eigenvalue inequalities. J. Differential Equations 247 (2009), 2871–2896.

    MATH  MathSciNet  Google Scholar 

  71. F. Gesztesy and M. Mitrea, Self-adjoint extensions of the Laplacian and Krein-type resolvent formulas in nonsmooth domains, J. Anal. Math. 113 (2011), 53–172.

    MATH  MathSciNet  Google Scholar 

  72. F. Gesztesy, M. Mitrea, and M. Zinchenko, Variations on a Theme of Jost and Pais, J. Funct. Anal. 253 (2007), 399–448.

    MATH  MathSciNet  Google Scholar 

  73. T. Giorgi and R. Smits, Monotonicity results for the principal eigenvalue of the generalized Robin problem, Illinois J. Math. 49 (2005), 1133–1143.

    MATH  MathSciNet  Google Scholar 

  74. T. Giorgi and R. Smits, Bounds and monotonicity for the generalized Robin problem, Z. Angew. Math. Phys. 59 (2008), 600–618.

    MATH  MathSciNet  Google Scholar 

  75. H. J. Girlich and H. J. Rossberg, Eine neue Methode zum Studium des Zusammenhanges zwischen charakteristischen Funktionen und Momenten sowie Semi-Invarianten, Math. Nachr. 51 (1971), 123–147.

    MATH  MathSciNet  Google Scholar 

  76. J. Glimm and A. Jaffe, The λ4)2 quantum field theory without cutoffs: II. The field operators and the approximate vacuum, Ann. of Math. (2) 91 (1970), 362–401.

    MATH  MathSciNet  Google Scholar 

  77. J. Glimm and A. Jaffe, Quantum Physics. A Functional Integral Point of View, Springer, New York, 1981.

    MATH  Google Scholar 

  78. H. W. Goelden, On non-degeneracy of the ground state of Schrödinger operators, Math. Z. 155 (1977), 239–247.

    MATH  MathSciNet  Google Scholar 

  79. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, corr. and enlarged ed., Academic Press, San Diego, 1980.

    MATH  Google Scholar 

  80. A. Grigor’yan, Heat Kernel and Analysis on Manifolds, Amer. Math. Soc., Providence, RI, and International Press, Boston, MA, 2009.

    MATH  Google Scholar 

  81. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.

    MATH  Google Scholar 

  82. L. Gross, Existence and uniqueness of physical ground states, J. Funct. Anal. 10 (1972), 52–109.

    MATH  Google Scholar 

  83. G. Grubb, Spectral asymptotics for Robin problems with a discontinuous coefficient, J. Spectr. Th. 1 (2011), 155–177.

    MATH  MathSciNet  Google Scholar 

  84. G. Grubb, The mixed boundary value problem, Krein resolvent formulas and spectral asymptotic estimates, J. Math. Anal. Appl. 382 (2011), 339–363.

    MATH  MathSciNet  Google Scholar 

  85. H. R. Grümm, Two theorems about e p, Rep. Math. Phys. 4 (1973), 211–215.

    MATH  Google Scholar 

  86. P. Gyrya and L. Saloff-Coste, Neumann and Dirichlet Heat Kernels in Inner Uniform Domains, Astérisque 336.

  87. P. R. Halmos and V. S. Sunder, Bounded Integral Operators on L 2 Spaces, Springer, Berlin, 1978.

    Google Scholar 

  88. I. W. Herbst and A. D. Sloan, Perturbation of translation invariant positivity preserving semigroups on L 2(ℝN), Trans. Amer. Math. Soc. 236 (1978), 325–360.

    MATH  MathSciNet  Google Scholar 

  89. H. Hess, R. Schrader, and D. A. Uhlenbrock, Domination of semigroups and generalization of Kato’s inequality, Duke Math. J. 44 (1977), 893–904.

    MATH  MathSciNet  Google Scholar 

  90. R. Jentzsch, Über Integralgleichungen mit positiven Kern, J. Reine Angew. Math. 141 (1912), 235–244.

    MATH  Google Scholar 

  91. D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995), 161–219.

    MATH  MathSciNet  Google Scholar 

  92. K. Jörgens, Linear Integral Operators, Pitman, Boston, 1982.

    MATH  Google Scholar 

  93. I. V. Kamotski and V. G. Maz’ya, On the third boundary value problem in domain with cusps, J. Math. Sci. (N.Y.) 173 (2011), 609–631.

    MATH  MathSciNet  Google Scholar 

  94. T. Kato, Trotter’s product formula for an arbitrary pair of self-adjoint contraction semigroups, in Topics in Functional Analysis: Essays Dedicated to M. G. Krein on the Occasion of his 70th Birthday, Academic Press, New York, 1978, pp. 185–195.

    Google Scholar 

  95. T. Kato, Perturbation Theory for Linear Operators, corr. printing of the 2nd ed., Springer, Berlin, 1980.

    MATH  Google Scholar 

  96. C. E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, Amer. Math. Soc., Providence, RI, 1994.

    MATH  Google Scholar 

  97. J. Kennedy, A Faber-Krahn inequality for the Laplacian with generalised Wentzell boundary conditions, J. Evol. Eq. 8 (2008), 557–582.

    MATH  Google Scholar 

  98. J. B. Kennedy, An isoperimetric inequality for the second eigenvalue of the Laplacian with Robin boundary conditions, Proc. Amer. Math. Soc. 137 (2009), 627–633.

    MATH  MathSciNet  Google Scholar 

  99. J. B. Kennedy, On the isoperimetric problem for the Laplacian with Robin and Wentzell boundary conditions, Bull. Aust. Math. Soc. 82 (2010), 348–350.

    MATH  MathSciNet  Google Scholar 

  100. J. B. Kennedy, On the isoperimetric problem for the higher eigenvalues of the Robin and Wentzell Laplacians, Z. Angew. Math. Phys. 61 (2010), 781–792.

    MATH  MathSciNet  Google Scholar 

  101. J. B. Kennedy, The nodal line of the second eigenfunction of the Robin Laplacian in2 can be closed, J. Differential Equations 251 (2011), 3606–3624.

    MATH  MathSciNet  Google Scholar 

  102. A. Kishimoto and D. W. Robinson, Positivity and monotonicity properties of ℂ 0-semigroups. II, Comm. Math. Phys. 75 (1980), 84–101.

    Google Scholar 

  103. A. Kishimoto and D. W. Robinson, Subordinate semigroups and order properties, J. Austral. Math. Soc. A 31 (1981), 59–76.

    MATH  MathSciNet  Google Scholar 

  104. V. B. Korotkov, Integral operators with Carleman kernels, Sov. Math. Dokl. 6 (1965), 1496–1499.

    MATH  MathSciNet  Google Scholar 

  105. H. Kovařík and A. Laptev, Hardy inequalities for Robin Laplacians, J. Funct. Anal. 262 (2012), 4972–4985.

    MATH  MathSciNet  Google Scholar 

  106. M. A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.

    Google Scholar 

  107. M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl. 26 (1950), 1–128.

    MathSciNet  Google Scholar 

  108. H. Leinfelder, A remark on a paper of Loren D. Pitt, Bayreuter Math. Schr. 11 (1982), 57–66.

    MATH  MathSciNet  Google Scholar 

  109. J. L. Lions, Espaces d’interpolation et domaines de puissances fractionnaires d’opérateurs, J. Math. Soc. Japan 14 (1962), 233–241.

    MATH  MathSciNet  Google Scholar 

  110. V. A. Liskevich and M. A. Perelmuter, Analyticity of submarkovian semigroups, Proc. Amer. Math. Soc. 123 (1995), 1097–1104.

    MATH  MathSciNet  Google Scholar 

  111. V. Liskevich, Z. Sobol, and H. Vogt, On the L p-theory of C 0 -semigroups associated with secondorder elliptic operators, II, J. Funct. Anal. 193 (2002), 55–76.

    MATH  MathSciNet  Google Scholar 

  112. A. Manavi, H. Vogt, and J. Voigt, Domination of semigroups associated with sectorial forms, J. Operator Theory 54 (2005), 9–25.

    MATH  MathSciNet  Google Scholar 

  113. V. Maz’ya, Sobolev Spaces. With Applications to Elliptic Partial Differential Equations, 2nd, revised and augmented ed., Springer, Berlin, 2011.

    MATH  Google Scholar 

  114. V. G. Maz’ya and T. O. Shaposhnikova, Theory of Sobolev Multipliers. With Applications to Differential and Integral Operators, Springer, Berlin, 2009.

    MATH  Google Scholar 

  115. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.

    MATH  Google Scholar 

  116. S. Miyajima and N. Okazawa, Generators of positive ℂ 0 -semigroups, Pacific J. Math. 125 (1986), 161–175.

    MATH  MathSciNet  Google Scholar 

  117. E. M. Ouhabaz, L -contractivity of semigroups generated by sectorial forms, J. London Math. Soc. (2) 46 (1992), 529–542.

    MATH  MathSciNet  Google Scholar 

  118. E.-M. Ouhabaz, Gaussian estimates and holomorphy of semigroups, Proc. Amer. Math. Soc. 123 (1995), 1465–1474.

    MATH  MathSciNet  Google Scholar 

  119. E.-M. Ouhabaz, Invariance of closed convex sets and domination criteria for semigroups, Potential Anal. 5 (1996), 611–625.

    MATH  MathSciNet  Google Scholar 

  120. E. M. Ouhabaz, Gaussian upper bounds for heat kernels of second-order elliptic operators with complex coefficients on arbitrary domains, J. Operator Theory 51 (2004), 335–360.

    MATH  MathSciNet  Google Scholar 

  121. E. M. Ouhabaz, Analysis of Heat Equations on Domains, Princeton University Press, Princeton, NJ, 2005.

    MATH  Google Scholar 

  122. E. M. Ouhabaz, Sharp Gaussian bounds and L p-growth of semigroups associated with elliptic and Schrödinger operators, Proc. Amer. Math. Soc. 134 (2006), 3567–3575.

    MATH  MathSciNet  Google Scholar 

  123. V. G. Papanicolaou, The probabilistic solution of the third boundary problem for second order elliptic equations, Probab. Theory Related Fields 87 (1990), 27–77.

    MATH  MathSciNet  Google Scholar 

  124. V. V. Peller, Hankel operators of classSp and their applications (rational approximation, Gaussian processes, the problem of majorizing operators), Math. USSR-Sb. 41 (1982), 443–479.

    MATH  Google Scholar 

  125. M. A. Perelmuter, Positivity preserving operators and one criterion of essential self-adjointness, J. Math. Anal. Appl. 82 (1981), 406–419.

    MATH  MathSciNet  Google Scholar 

  126. O. Perron, Zur Theorie der Matrices, Math. Ann. 64 (1907), 248–263.

    MATH  MathSciNet  Google Scholar 

  127. L. D. Pitt, A compactness condition for linear operators on function spaces, J. Operator Theory 1 (1979), 49–54.

    MATH  MathSciNet  Google Scholar 

  128. A. G. Ramm and L. Li, Estimates for Green’s functions, Proc. Amer. Math. Soc. 103 (1988), 875–881.

    MATH  MathSciNet  Google Scholar 

  129. D. W. Robinson, Elliptic Operators and Lie Groups, Oxford University Press, Oxford, 1991.

    MATH  Google Scholar 

  130. M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV: Analysis of Operators, Academic Press, New York, 1978.

    MATH  Google Scholar 

  131. G. Rozenblum, Semigroup domination and eigenvalue estimates, St. Petersburg Math. J. 12 (2001), 831–845.

    MathSciNet  Google Scholar 

  132. A. R. Schep, Weak Kato-inequalities and positive semigroups, Math. Z. 190 (1985), 305–314.

    MATH  MathSciNet  Google Scholar 

  133. B. Simon, Ergodic semigroups of positivity preserving self-adjoint operators, J. Funct. Anal. 12 (1973), 335–339.

    MATH  Google Scholar 

  134. B. Simon, An abstract Kato’s inequality for generators of positivity preserving semigroups, Indiana Univ. Math. J. 26 (1977), 1067–1073.

    MATH  MathSciNet  Google Scholar 

  135. B. Simon, Classical boundary conditions as a technical tool in modern mathematical physics, Adv. Math. 30 (1978), 268–281.

    MATH  Google Scholar 

  136. B. Simon, Kato’s inequality and the comparison of semigroups, J. Funct. Anal. 32 (1979), 97–101.

    MATH  MathSciNet  Google Scholar 

  137. B. Simon, Trace Ideals and Their Applications, 2nd ed., Amer. Math. Soc., Providence, RI, 2005.

    MATH  Google Scholar 

  138. Z. Sobol and H. Vogt, On the L p-theory of ℂ 0 -semigroups associated with second-order elliptic operators, I, J. Funct. Anal. 193 (2002), 24–54.

    MATH  MathSciNet  Google Scholar 

  139. P. Stollmann and J. Voigt, Perturbation of Dirichlet forms by measures, Potential Anal. 5 (1996), 109–138.

    MATH  MathSciNet  Google Scholar 

  140. J. L. Taylor, S. Kim, and R.M. Brown, The Green function for elliptic systems in two dimension, Commun. Partial Differential Equations 38 (2013), 1574–1600.

    MATH  MathSciNet  Google Scholar 

  141. H. Triebel, Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers, Rev. Mat. Complut. 15 (2002), 475–524.

    MATH  MathSciNet  Google Scholar 

  142. M. van den Berg, Gaussian bounds for the Dirichlet heat kernel, J. Funct. Anal. 88 (1990), 267–278.

    MATH  MathSciNet  Google Scholar 

  143. M. Warma, The Laplacian with General Boundary Conditions, Ph.D. Thesis, Faculty of Mathematics, University of Ulm, 2002.

  144. M. Warma, The Robin and Wentzell-Robin Laplacians on Lipschitz domains, Semigroup Forum 73 (2006), 10–30.

    MATH  MathSciNet  Google Scholar 

  145. J. Weidmann, Linear Operators in Hilbert Spaces, Springer, New York, 1980.

    MATH  Google Scholar 

  146. J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.

    MATH  Google Scholar 

  147. D. R. Yafaev, Mathematical Scattering Theory. General Theory, Amer. Math. Soc., Providence, RI, 1992.

    MATH  Google Scholar 

  148. D. R. Yafaev, Mathematical Scattering Theory. Analytic Theory, Amer. Math. Soc., Providence, RI, 2010.

    MATH  Google Scholar 

  149. P. P. Zabreyko, A. I. Koshelev, M. A. Krasnosel’skii, S. G. Mikhlin, L. S. Rakovshchik, and V. Ya. Stet’senko, Integral Equations — A Reference Text, Noordhoff International Publ., Leyden, 1975

    Google Scholar 

  150. E.M. E. Zayed, Short-time asymptotics of the heat kernel of the Laplacian of a bounded domain with Robin boundary conditions, Houston J. Math. 24 (1998), 377–385.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz Gesztesy.

Additional information

Partially supported by the Simons Foundation Grant # 281566.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gesztesy, F., Mitrea, M. & Nichols, R. Heat kernel bounds for elliptic partial differential operators in divergence form with Robin-type boundary conditions. JAMA 122, 229–287 (2014). https://doi.org/10.1007/s11854-014-0008-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-014-0008-7

Keywords

Navigation