Skip to main content
Log in

Concerning the wave equation on asymptotically Euclidean manifolds

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

We obtain KSS, Strichartz and certain weighted Strichartz estimates for the wave equation on (ℝd, g), d ≥ 3, when the metric g is non-trapping and approaches the Euclidean metric like 〈xρ with ρ > 0. Using the KSS estimate, we prove almost global existence for quadratically semilinear wave equations with small initial data for ρ > 1 and d = 3. Also, we establish the Strauss conjecture when the metric is radial with ρ > 1 for d = 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bahouri and J. Y. Chemin, Équations d’ondes quasilinéaires et estimations de Strichartz, Amer. J. Math. 121 (1999), 1337–1377.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Bahouri and J. Y. Chemin, Équations d’ondes quasilinéaires et effet dispersif (Quasilinear wave equations and dispersive effect), Internat. Math. Res. Notices 21 (1999), 1141–1178.

    Article  MathSciNet  Google Scholar 

  3. J.-F. Bony and D. Häfner, The semilinear wave equation on asymptotically Euclidean manifolds, Comm. Partial Differential Equations 35 (2010), 23–67.

    Article  Google Scholar 

  4. N. Burq, Global Strichartz estimates for nontrapping geometries: about an article by H. F. Smith and C. D. Sogge: “Global Strichartz estimates for nontrapping perturbations of the Laplacian”, Comm. Partial Differential Equations 28 (2003), 1675–1683.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Christ and A. Kiselev, Maximal functions associated to filtrations, J. Funct. Anal. 179 (2001), 409–425.

    Article  MATH  MathSciNet  Google Scholar 

  6. D. Fang and C. Wang, Weighted Strichartz estimates with angular regularity and their applications, Forum Math., to appear.

  7. V. Georgiev, H. Lindblad and C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math. 119 (1997), 1291–1319.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. T. Glassey, Existence in the large for □u = F(u) in two dimensions, Math. Z. 178 (1981), 233–261.

    Article  MATH  MathSciNet  Google Scholar 

  9. K. Hidano, J. Metcalfe, H. F. Smith, C. D. Sogge and Y. Zhou, On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles, Trans. Amer. Math. Soc., to appear.

  10. F. John, Blow-up for quasilinear wave equations in three space dimensions, Comm. Pure Appl. Math. 34 (1981), 29–51.

    Article  MATH  MathSciNet  Google Scholar 

  11. F. John and S. Klainerman, Almost global existence to nonlinear wave equations in three space dimensions, Comm. Pure Appl. Math. 37 (1984), 443–455.

    Article  MATH  MathSciNet  Google Scholar 

  12. J.-L. Journé, A. Soffer and C. D. Sogge Decay estimates for Schrödinger equations, Comm. Pure Appl. Math. 44 (1991), 573–604.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. V. Kapitanski, Norm estimates in Besov and Lizorkin-Triebel spaces for the solutions of second-order linear hyperbolic equations, J. Soviet Math. 56 (1991), 2348–2389.

    Article  MathSciNet  Google Scholar 

  14. M. Keel, H. Smith and C. D. Sogge, Almost global existence for some semilinear wave equations, Dedicated to the memory of Thomas H. Wolff, J. Anal. Math. 87 (2002), 265–279.

    MATH  MathSciNet  Google Scholar 

  15. M. Keel, H. F. Smith and C. D. Sogge, Almost global existence for quasilinear wave equations in three space dimensions, J. Amer. Math. Soc. 17 (2004), 109–153 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955–980.

    Article  MATH  MathSciNet  Google Scholar 

  17. C. E. Kenig, G. Ponce and L. Vega, On the Zakharov and Zakharov-Schulman systems, J. Funct. Anal. 127 (1995), 204–234.

    Article  MATH  MathSciNet  Google Scholar 

  18. S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math. 38 (1985), 321–332.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Klainerman and G. Ponce, Global, small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math. 36 (1983), 133–141.

    Article  MATH  MathSciNet  Google Scholar 

  20. H. Lindblad and C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995), 357–426.

    Article  MATH  MathSciNet  Google Scholar 

  21. H. Lindblad and C. D. Sogge, Long-time existence for small amplitude semilinear wave equations, Amer. J. Math. 118 (1996), 1047–1135.

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Metcalfe, Global Strichartz estimates for solutions to the wave equation exterior to a convex obstacle, Trans. Amer. Math. Soc. 356 (2004), 4839–4855.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Metcalfe and C. Sogge, Long-time existence of quasilinear wave equations exterior to starshaped obstacles via energy methods, SIAM J. Math. Anal. 38 (2006), 188–209 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  24. J. Metcalfe and D. Tataru, Global parametrices and dispersive estimates for variable coefficient wave equations, arXiv:0707.1191.

  25. G. Mockenhaupt, A. Seeger and C. D. Sogge, Local smoothing of Fourier integral operators and Carleson-Sjölin estimates, J. Amer. Math. Soc. 6 (1993), 65–130.

    MATH  MathSciNet  Google Scholar 

  26. C. S. Morawetz, Time decay for the nonlinear Klein-Gordon equation, Proc. Roy. Soc. London A306 (1968), 291–296.

    MathSciNet  Google Scholar 

  27. T. Sideris, Global behavior of solutions to nonlinear wave equations in three dimensions, Comm. Partial Differential Equations 8 (1983), 1291–1323.

    Article  MATH  MathSciNet  Google Scholar 

  28. T. C. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions, J. Differential Equations 52 (1984), 378–406.

    Article  MATH  MathSciNet  Google Scholar 

  29. H. F. Smith, A parametrix construction for wave equations with C 1,1 coefficients, Ann. Inst. Fourier (Grenoble) 48 (1998), 797–835.

    MATH  MathSciNet  Google Scholar 

  30. H. F. Smith and C. D. Sogge, Global Strichartz estimates for nontrapping perturbations of the Laplacian, Comm. Partial Differential Equations 25 (2000), 2171–2183.

    Article  MATH  MathSciNet  Google Scholar 

  31. C. D. Sogge, Lectures on Nonlinear Wave Equations, second edition, International Press, Boston, MA, 2008.

    MATH  Google Scholar 

  32. G. Staffilani and D. Tataru, Strichartz estimates for a Schrödinger equation with nonsmooth coefficients Comm. Partial Differential Equations 27 (2002), 1337–1372.

    Article  MATH  MathSciNet  Google Scholar 

  33. W. Strauss, Dispersal of waves vanishing on the boundary of an exterior domain, Comm. Pure Appl. Math. 28 (1975), 265–278.

    Article  MATH  MathSciNet  Google Scholar 

  34. D. Tataru, Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Amer. J. Math. 122 (2000), 349–376.

    Article  MATH  MathSciNet  Google Scholar 

  35. D. Tataru, Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. II, Amer. J. Math. 123 (2001), 385–423.

    Article  MATH  MathSciNet  Google Scholar 

  36. D. Tataru, Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation, Trans. Amer. Math. Soc. 353 (2001), 795–807.

    Article  MATH  MathSciNet  Google Scholar 

  37. D. Tataru, Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III, J. Amer. Math. Soc., 15 (2002), 419–442 (electronic).

    Article  MathSciNet  Google Scholar 

  38. Y. Zhou, Cauchy problem for semilinear wave equations with small data in four space dimensions, J. Partial Differential Equations 8 (1995), 135–144.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher D. Sogge.

Additional information

The first author was supported by the National Science Foundation.

The second author was supported in part by NSFC 10871175.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sogge, C.D., Wang, C. Concerning the wave equation on asymptotically Euclidean manifolds. JAMA 112, 1–32 (2010). https://doi.org/10.1007/s11854-010-0023-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-010-0023-2

Navigation