Skip to main content
Log in

A Local Energy Estimate for Wave Equations on Metrics Asymptotically Close to Kerr

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

In this article, we prove a local energy estimate for the linear wave equation on metrics with slow decay to a Kerr metric with small angular momentum. As an application, we study the quasilinear wave equation \(\Box _{g(u, t, x)} u = 0\) where the metric g(utx) is close (and asymptotically equal) to a Kerr metric with small angular momentum g(0, tx). Under suitable assumptions on the metric coefficients, and assuming that the initial data for u is small enough, we prove global existence and decay of the solution u.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac, S.: On the Morawetz-Keel-Smith-Sogge inequality for the wave equation on a curved background. Publ. Res. Inst. Math. Sci. 42(3), 705–720 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. Ann. Math. 182(3), 787–853 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Angelopoulos, Y., Aretakis, S., Gajic, D.: Late-time asymptotics for the wave equation on spherically symmetric stationary backgrounds. Adv. Math. 323, 529–621 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Angelopoulos, Y., Aretakis, S., Gajic, D.: Late-time asymptotics for the wave equation on extremal Reissner-Nordström backgrounds, arXiv:1807.03802

  5. Aretakis, S.: Decay of axisymmetric solutions of the wave equation on extreme Kerr backgrounds. J. Funct. Anal. 263(9), 2770–2831 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Blue, P., Soffer, A.: Semilinear wave equations on the Schwarzschild manifold I: local decay estimates. Adv. Differ. Equ. 8, 595–614 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Blue, P., Soffer, A.: The wave equation on the Schwarzschild metric II: Local decay for the spin-2 Regge-Wheeler equation. J. Math. Phys. 46, 9 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Blue, P., Soffer, A.: Errata for “Global existence and scattering for the nonlinear Schrödinger equation on Schwarzschild manifolds”, “Semilinear wave equations on the Schwarzschild manifold I: Local decay estimates”, and “The wave equation on the Schwarzschild metric II: Local decay for the spin 2 Regge Wheeler equation”, preprint

  9. Blue, P., Soffer, A.: Phase space analysis on some black hole manifolds. J. Funct. Anal. 256(1), 1–90 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Blue, P., Soffer, A.: Improved decay rates with small regularity loss for the wave equation about a Schwarzschild black hole, arXiv:math/0612168v1

  11. Blue, P., Sterbenz, J.: Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space. Commun. Math. Phys. 268(2), 481–504 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Bony, J.F., Häfner, D.: The semilinear wave equation on asymptotically Euclidean manifolds. Commun. Partial Differ. Equ. 35, 23–67 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Bony, J.F., Häfner, D.: Decay and non-decay of the local energy for the wave equation in the De Sitter-Schwarzschild metric. Commun. Math. Phys. 282, 697–719 (2008)

    ADS  MATH  Google Scholar 

  14. Booth, R., Christianson, H., Metcalfe, J., Perry, J.: Localized Energy for Wave Equations with Degenerate Trapping. Math. Res. Lett. 26, 991–1025 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Candy, T., Kauffman, C., Lindblad, H.: Asymptotic Behavior of the Maxwell-Klein-Gordon system. Commun. Math. Phys. (2019)

  16. Christianson, H.: Dispersive estimates for manifolds with one trapped orbit. Commun. Partial Differ. Equ. 33, 1147–1174 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Colin de Verdière, Y., Parisse, B.: Equilibre Instable en Regime Semi-classique: I - Concentration Microlocale. Commun. PDE. 19, 1535–1563 (1994)

    MATH  Google Scholar 

  18. Dafermos, M., Rodnianski, I.: The red-shift effect and radiation decay on black hole spacetimes. Commun. Pure Appl. Math. 62(7), 859–919 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Dafermos, M., Rodnianski, I.: A note on energy currents and decay for the wave equation on a Schwarzschild background. arXiv:0710.0171

  20. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves, arXiv:0811.0354

  21. Dafermos, M., Rodnianski, I.: A new physical-space approach to decay for the wave equation with applications to black hole spacetimes, arXiv:0910.4957

  22. Dafermos, M., Rodnianski, I., Shlapentokh-Rothman, Y.: Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case \(|a|<M\). Ann. Math. 183(3), 787–913 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Donninger, R., Schlag, W., Soffer, A.: On pointwise decay of linear waves on a Schwarzschild black hole background. Commun. Math. Phys. 309, 51–86 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Dyatlov, S.: Spectral gaps for normally hyperbolic trapping. Annales de l’Institut Fourier 66, 55–82 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Dyatlov, S.: Asymptotics of linear waves and resonances with applications to Black Holes. Comm. Math. Phys. 335(3), 1445–1485 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Dyatlov, S., Zworski, M.: Trapping of waves and null geodesics for rotating black holes. Phys. Rev. D 88, 084037 (2013)

    ADS  Google Scholar 

  27. Gérard, C., Sjöstrand, J.: Semiclassical resonances generated by a closed trajectory of hyperbolic type. Commun. Math. Phys. 108(3), 391–421 (1987)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Hawking, S. W., Ellis, G. F. R.: The large scale structure of space-time. Cambridge Monographs on Mathematical Physics, No. 1. London, New York: Cambridge University Press (1973)

  29. Hintz, P.: Normally hyperbolic trapping on asymptotically stationary spacetimes. arXiv:1811.07843

  30. Hintz, P.: A sharp version of Price’s law for wave decay on asymptotically flat spacetimes. arXiv:2004.01664

  31. Hintz, P., Vasy, A.: Global analysis of quasilinear wave equations on asymptotically Kerr-de Sitter spaces, Int. Math. Res. Notices (17), 5355–5426 (2016)

  32. Keel, M., Smith, H., Sogge, C.D.: Almost global existence for some semilinear wave equations, Dedicated to the memory of Thomas H. Wolff. J. Anal. Math. 87, 265–279 (2002)

    MATH  Google Scholar 

  33. Keir, J.: The weak null condition and global existence using the p-weighted energy method Preprint (2018)

  34. Kenig, C.E., Ponce, G., Vega, L.: On the Zakharov and Zakharov-Schulman systems. J. Funct. Anal. 127, 204–234 (1995)

    MathSciNet  MATH  Google Scholar 

  35. Laba, I., Soffer, A.: Global existence and scattering for the nonlinear Schrödinger equation on Schwarzschild manifolds. Helv. Phys. Acta 72, 274–294 (1999)

    MathSciNet  MATH  Google Scholar 

  36. Laul, P., Metcalfe, J.: Localized energy estimates for wave equations on high-dimensional Schwarzschild space-times. Proc. Amer. Math. Soc. 140, 3247–3262 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Lindblad, H.: Global solutions of quasilinear wave equations. Amer. J. Math. 130(1), 115–157 (2008)

    MathSciNet  MATH  Google Scholar 

  38. Lindblad, H., Rodnianski, I.: The global stability of the Minkowski space-time in harmonic gauge. Ann. Math 171(3), 1401–1477 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Lindblad, H.: On the asymptotic behavior of solutions to Einstein’s vacuum equations in wave coordinates. Commun. Math. Phys. 353(1), 135–184 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Lindblad, H., Schlue, V.: Scattering from infinity for semilinear models of Einstein’s equations satisfying the weak null condition. arXiv:1711.00822

  41. Lindblad, H., Tohaneanu, M.: Global existence for quasilinear wave equations close to Schwarzschild. Commun. Partial Differ. Equ. 43(6), 893–944 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Marzuola, J., Metcalfe, J., Tataru, D., Tohaneanu, M.: Strichartz estimates on Schwarzschild black hole backgrounds. Commun. Math. Phys. 293(1), 37–83 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Metcalfe, J., Sogge, C.: Long-time existence of quasilinear wave equations exterior to star-shaped obstacles via energy methods. SIAM J. Math. Anal. 38(1), 188–209 (2006). (electronic)

    MathSciNet  MATH  Google Scholar 

  44. Metcalfe, J., Sterbenz, J., Tataru, D.: Local energy decay for scalar fields on time dependent non-trapping backgrounds, AJM to appear, arXiv:1703.08064

  45. Metcalfe, J., Tataru, D.: Decay estimates for variable coefficient wave equations in exterior domains, Advances in phase space analysis of partial differential equations, 201–216, Progr. Nonlinear Differential Equations Appl., 78

  46. Metcalfe, J., Tataru, D., Tohaneanu, M.: Price’s law on nonstationary space-times. Adv. Math. 230(3), 995–1028 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Morawetz, C.: Time decay for the nonlinear Klein-Gordon equations. Proc. Roy. Soc. Ser. A. 306, 291–296 (1968)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Morgan, K.: Wave decay in the asymptotically flat stationary setting. PhD thesis, (2019)

  49. Moschidis, G.: The \(r^{p}\)-weighted energy method of Dafermos and Rodnianski in general asymptotically flat spacetimes and applications. Ann. PDE 2(6), 1–194 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Nonnenmacher, S., Zworski, M.: Semiclassical resolvent estimates in chaotic scattering. Appl. Math. Res. Express. AMRX, (1) (2009):74–86

  51. Oliver, J., Sterbenz, J.: A Vector Field Method for Radiating Black Hole Spacetimes. Anal. PDE. 13(1), 29–92 (2020)

    MathSciNet  MATH  Google Scholar 

  52. Price, R.: Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations. Phys. Rev. D (3) 5, 2419–2438 (1972)

    ADS  MathSciNet  Google Scholar 

  53. Ralston, J.V.: Solutions of the wave equation with localized energy. Commun. Pure Appl. Math. 22, 807–823 (1969)

    MathSciNet  MATH  Google Scholar 

  54. Sà Barreto, A., Zworski, M.: Distribution of resonances for spherical black holes. Math. Res. Lett. 4(1), 103–121 (1997)

    MathSciNet  MATH  Google Scholar 

  55. Sbierski, J.: Characterisation of the Energy of Gaussian Beams on Lorentzian Manifolds - with Applications to Black Hole Spacetimes. Anal. PDE 8(6), 1379–1420 (2015)

    MathSciNet  MATH  Google Scholar 

  56. Schlue, V.: Decay of linear waves on higher dimensional Schwarzschild black holes. Anal. PDE 6(3), 515–600 (2013)

    MathSciNet  MATH  Google Scholar 

  57. Smith, H.F., Sogge, C.D.: Global Strichartz estimates for nontrapping perturbations of the Laplacian. Commun. Partial Differ. Equ. 25, 2171–2183 (2000)

    MathSciNet  MATH  Google Scholar 

  58. Sterbenz, J.: Angular regularity and Strichartz estimates for the wave equation. With an appendix by I. Rodnianski. Int. Math. Res. Not. 2005, 187–231

  59. Strauss, W.: Dispersal of waves vanishing on the boundary of an exterior domain. Commun. Pure Appl. Math. 28, 265–278 (1975)

    MathSciNet  MATH  Google Scholar 

  60. Tataru, D.: Local decay of waves on asymptotically flat stationary space-times. AJM Volume 135, No. 2, 361–401

  61. Tataru, D., Tohaneanu, M.: Local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. 2, 248–292 (2011)

    MathSciNet  MATH  Google Scholar 

  62. Taylor, M.: Pseudodifferential Operators and Nonlinear PDE. Birkhaüser Boston Inc., Boston, MA (1991)

    MATH  Google Scholar 

  63. Taylor, M.: Tools for PDE: Pseudodifferential Operators, Paradifferential operators, and layer potentials. American Mathematical Society, Providence, RI (2000)

    MATH  Google Scholar 

  64. Wunsch, J., Zworski, M.: Resolvent estimates for normally hyperbolic trapped sets. Ann. Henri Poincaré 12(7), 1349–1385 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  65. Yang, S.: Global stability of solutions to nonlinear wave equations. Selecta Math. 21(3), 833–881 (2015)

    MathSciNet  MATH  Google Scholar 

  66. Yang, S.: On the quasilinear wave equations in time dependent inhomogeneous media. J. Hyper. Differ. Equ. 13, 273 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

H.L. was supported in part by NSF grant DMS-1500925 and Simons Collaboration Grant 638955. M.T. was supported in part by the NSF Ggrant DMS–1636435 and Simons collaboration Grant 586051. We would also like to thank the Mittag Leffler Institute for their hospitality during the Fall 2019 program in Geometry and Relativity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Tohaneanu.

Additional information

Communicated by Mihalis Dafermos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindblad, H., Tohaneanu, M. A Local Energy Estimate for Wave Equations on Metrics Asymptotically Close to Kerr. Ann. Henri Poincaré 21, 3659–3726 (2020). https://doi.org/10.1007/s00023-020-00950-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-020-00950-0

Navigation