Skip to main content

Advertisement

Log in

Appraisal of 2004 tsunami induced shoreline change in South Andaman, India using DSAS

  • Published:
Journal of Coastal Conservation Aims and scope Submit manuscript

Abstract

The 26th December 2004 Indian Ocean tsunami is considered as a most disastrous catastrophic event causing economic losses and lives. Andaman and Nicobar Islands (ANI’s) was the first responders of this devastating event in the Indian sub-continent. To appraise the shoreline changes due to this tsunami a study was apprehended using Geographic Information Systems (GIS) and Digital Shoreline Analysis Systems (DSAS). A total of 58 coastal village’s in four zones were identified for quantifying the shoreline changes due to the 2004 tsunami as Net Shoreline Movement (NSM) and End Point Rate (EPR). The results suggest maximum shoreline changes in Wandoor 2005–2018 (NSM 6187.7 m; EPR 530.03 m/year), Sippighat 2005–2018 (NSM 4163.27 m; EPR 356.65 m/year), Manpur 2005–2018 (NSM 4338.29 m; EPR 371.66 m/year), and Mathura 2005–2018 (NSM 4540.9 m; EPR 388.99 m/year) were observed on the coastal front comprising of soft Andaman flysch of sedimentary origin. Andaman administration has constructed high raised concrete seawalls at various villages to prevent coastal population in case of any catastrophic eventualities like the 2004 tsunami.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All the data collected are presented as tables and figures.

References

  • Abidin HZ, Andreas H, Gumilar I, Sidiq TP, Fukuda Y (2013) Land subsidence in coastal city of Semarang (Indonesia): characteristics, impacts and causes. Nat Hazards Risk 4:226–240

    Article  Google Scholar 

  • Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar Coast Shelf Sci 76(1):1–13. https://doi.org/10.1016/j.ecss.2007.08.024

    Article  ADS  Google Scholar 

  • Ammon CJ, Chen Ji, Thio HK, Robinson D, Sidao Ni, Hjorleifsdottir V, Kanamori H, Lay T, Das S, Helmberger D, Ichinose G, Polet J, Wald D (2005) Rupture process of the 2004 Sumatra–Andaman earthquake. Science 308:1133–1139

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bahuguna A, Nayak S, Roy D (2008) Impact of the tsunami and earthquake of 26th December 2004 on the vital coastal ecosystems of the Andaman and Nicobar Islands assessed using RESOURCESAT AWiFS data. Int J Appl Earth Obs Geoinf 10:229–237. https://doi.org/10.1016/j.jag.2008.02.010

    Article  Google Scholar 

  • Barbier EB, Koch EW, Silliman BR, Hacker SD, Wolanski E, Primavera EJ, Granek EF, Polasky S, Aswani S, Cramer LA, Stoms DM, Kennedy CJ, Bael D, Kappel CV, Perillo GME, Reed D (2008) Coastal ecosystem based management with non-linear ecological functions and values. Science 319:321

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bheeroo RA, Chandrasekar N, Kaliraj S, Magesh NS (2017) Shoreline change rate and erosion risk assessment along the Trou Aux Biches-Mont Choisy beach on the northwest coast of Mauritius using a GIS-DSAS technique. Environ Earth Sci 75:444. https://doi.org/10.1007/s12665-016-5311-4

    Article  ADS  Google Scholar 

  • Bilham R (2005) A flying start, then a slow slip. Science 308:1126–1127

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bilham R, Engdahl ER, Feldl N, Satyabala SP (2005) Partial and complete rupture of the Indo-Andaman plate boundary 1847–2004. Seismol Res Lett 76:299–311

    Article  Google Scholar 

  • Boak EH, Turner IL (2005) Shoreline definition and detection: a review. J Coastal Res 21(4):688–703. https://doi.org/10.2112/03-0071.1

    Article  Google Scholar 

  • Bondevik S (2008) The sands of tsunami time. Nature 455:1183–1184

    Article  ADS  CAS  Google Scholar 

  • Census of India (2011) District census handbook Andaman and Nicobar Islands. Series 36, part XII-A, p 47

  • David TI, Mukesh MV, Kumaravel S, Sabeen HM (2016) Long-and short-term variations in shore morphology of Van Island in Gulf of Mannar using remote sensing images and DSAS analysis. Arab J Geosci. https://doi.org/10.1007/s12517-016-2772-4

    Article  Google Scholar 

  • Del Rio L, Gracia FJ (2013) Error determination in the photogrammetric assessment of shoreline changes. Nat Hazards 65:2385–2397. https://doi.org/10.1007/s11069-012-0407-y

    Article  Google Scholar 

  • Devaney JL, Lehmann M, Feller IC, Parker JD (2017) Mangrove micro-climates alter seedling dynamics at the range edge. Ecology 98(10):2513–2520. https://doi.org/10.1002/ecy.1979

    Article  PubMed  Google Scholar 

  • Duru U (2017) Shoreline change assessment using multi-temporal satellite images: a case study of Lake Sapanca, NW Turkey. Environ Monit Assess. https://doi.org/10.1007/s10661-017-6112-2

    Article  PubMed  Google Scholar 

  • Fine IV, Rabinovich AB, Thomson RE (2005) The dual source region for the 2004 Sumatra tsunami. Geophys Res Lett 32:L16602. https://doi.org/10.1029/2005GL023521

    Article  ADS  Google Scholar 

  • Forbes D, Parkers G, Manson G, Ketch K (2004) Storms and shoreline retreat in the southern Gulf of St. Lawrence. Mar Geol 210(1–4):169–204

    Article  ADS  Google Scholar 

  • Garay MJ, Diner DJ (2007) Multi-angle imaging Spectro Radiometer (MISR) time-lapse imagery of tsunami waves from the 26 December 2004 Sumatra–Andaman earthquake. Remote Sens Environ 107(1–2):256–263. https://doi.org/10.1016/j.rse.2006.10.022

    Article  ADS  Google Scholar 

  • Gaur AS, Sundaresh (2014) Palaeo-coastline of Saurashtra, Gujarat: a study based on archaeological proxies. Indian J Geo-Mar Sci 43(7):1224–1229

    Google Scholar 

  • Goto K, Chague-Goff C, Fujino S, Goff J, Jaffe B, Nishimura Y, Richmond B, Sugawara D, Szczucinski W, Tappin DR, Witter RC, Yulianto E (2011) New insights of tsunami hazard from the 2011 Tohoku-Oki event. Mar Geol 290:46–50

    Article  ADS  Google Scholar 

  • Ioualalen MJ, Asavanant N, Kaewbanjak ST, Grilli JT, Kirby, Watts P (2007) Modeling the 26 December 2004 Indian Ocean tsunami: case study of impact in Thailand. J Phys Res 112:C07024. https://doi.org/10.1029/2006JC003850

    Article  ADS  Google Scholar 

  • Kathiresan K (2003) How do mangrove forests induce sedimentation? Rev Biol Trop 51:355360

    Google Scholar 

  • Lay T, Kanamori H, Ammon CJ, Nettles M, Ward SN, Aster RC, Beck SL, Bilek SL, Brudzinski MR, Butler R, De Shon HR, Ekström G, Satake K, Sipkin S (2005) The great Sumatra-Andaman earthquake of 26 December 2004. Science 308:1127–1133

    Article  ADS  CAS  PubMed  Google Scholar 

  • Leatherman SP, Douglas BC, La Brecque JL (2003) Sea level and coastal erosion require large-scale monitoring. EOS Trans 84(2):13–20

    Article  ADS  Google Scholar 

  • Lewis RR (2005) Ecological engineering for successful management and restoration of mangrove forests. Ecol Eng 24(4):403–418. https://doi.org/10.1016/j.ecoleng.2004.10.003

    Article  Google Scholar 

  • Malik JN, Murty CVR (2005) Landscape changes in Andaman and Nicobar Islands (India) due to mw 9.3 tsunamigenic Sumatra Earthquake of 26 December 2004. Curr Sci 88:357–359

    Google Scholar 

  • Malik JN, Banerjee C, Khan A, Johnson FC, Shishikura M, Satake K, Singhvi AK (2015) Stratigraphic evidence for earthquakes and tsunamis on the west coast of South Andaman Island, India during the past 1000 years. Tectonophysics 661:49–65. https://doi.org/10.1016/j.tecto.2015.07.038

    Article  ADS  Google Scholar 

  • Malik JN, Shishikura M, Echigo T, Ikeda Y, Satake K, Kayanne H, Sawai Y, Murty CVR, Dikshit O (2011) Geologic evidence for two pre-2004 earthquakes during recent centuries near Port Blair, South Andaman Island, India. Geology 39:559–562. https://doi.org/10.1130/G31707.1

    Article  ADS  Google Scholar 

  • Malik NJ, Johnson FC, Khan A, Sahoo S, Irshad R, Paul D, Arora S, Baghel KP, Chopra S (2019) Tsunami records of the last 8000 years in the Andaman Island, India, from mega and large earthquakes: insights on recurrence intervals. Sci Rep 9:18463. https://doi.org/10.1038/s41598-019-54750-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Marfai MA (2011) Impact of coastal inundation on ecology and agricultural land use case study in Central Java, Indonesia. Quaestiones Geographicae 30:19–32

    Article  Google Scholar 

  • Marfai MA, King L (2007) Potential vulnerability implications of coastal inundation due to sea level rise for the coastal zone of Semarang city, Indonesia. Environ Geol 54:1235–1245

  • Marois DE, Mitsch WJ (2015) Coastal protection from tsunamis and cyclones provided by mangrove wetlands - a review. Int J Biodiv Sci Ecosyst Serv Manag 11:71–83

    Google Scholar 

  • Mujabar S, Chandrasekar (2011) A shoreline change analysis along the coast between Kanyakumari and Tuticorin, India, using Digital Shoreline Analysis System. Geo-spatial Inform Sci 14(4):282–293. https://doi.org/10.1007/s11806-011-0551-7

    Article  Google Scholar 

  • Murali MR, Dhiman R, Choudhary R, Seelam JK, Ilangovan D, Vethamony P (2015) Decadal shoreline assessment using remote sensing along the central Odisha coast, India. Environ Earth Sci. https://doi.org/10.1007/s12665-015-4698-7

  • Muskananfola MR, Supriharyono, Sigit F (2020) Spatio-temporal analysis of shoreline change along the coast of Sayung Demak, Indonesia using Digital Shoreline Analysis System. Reg Stud Mar Sci 34. https://doi.org/10.1016/j.rsma.2020.101060

  • Nehru P, Balasubramanian P (2016) Re-colonizing mangrove species in tsunami devastated habitats at Nicobar Islands, India. Check List 7(3):253–256. https://doi.org/10.15560/7.3.253

    Article  Google Scholar 

  • Nehru P, Balasubramanian P (2018) Mangrove species diversity and composition in the successional habitats of Nicobar Islands, India: a post-tsunami and subsidence scenario. For Ecol Manag 427:70–77. https://doi.org/10.1016/j.foreco.2018.05.063

    Article  Google Scholar 

  • Pajak MJ, Leatherman SP (2002) The high-water line as shoreline indicator. J Coastal Res 18(2):329–337

    Google Scholar 

  • Piatanesi A, Lorito S (2007) Rupture process of the 2004 Sumatra–Andaman Earthquake from Tsunami Waveform Inversion. Bull Seismol Soc Am 97(1A):5223–5231. https://doi.org/10.1785/0120050627

    Article  Google Scholar 

  • Quartel S, Kroon A, Augustinus P, Santen PV, Tri N (2007) Wave attenuation in coastal mangroves in the red river delta, Vietnam. J Asian Earth Sci 29(4):576–584. https://doi.org/10.1016/j.jseaes.2006.05.008

    Article  ADS  Google Scholar 

  • Sarwar GM, Woodroffe CD (2013) Rates of shoreline change along the coast of Bangladesh. J Coastal Conserv. https://doi.org/10.1007/s11852-013-0251-6

    Article  Google Scholar 

  • Scott DB (2005) Coastal changes, rapid. In: Schwartz ML (ed) Encyclopedia of coastal sciences. Springer, The Netherlands, pp 253–255

    Google Scholar 

  • Sekovski I, Stecchi F, Mancini F, Del Rio L (2014) Image classification methods applied to shoreline extraction on very high-resolution multispectral imagery. Int J Remote Sens 35(10):3556–3578

    Article  Google Scholar 

  • Shankar S, Dharanirajan DK, Agrawal N (2016) Role of geospatial technology in identifying natural habitats of malarial vectors in South Andaman, India. J Vector Borne Dis 53:54–62

    PubMed  Google Scholar 

  • Shiva Shankar V, Narshimulu G, Kaviarasan T, Narayani S, Dharanirajan K, James RA, Singh RP (2019) 2004 Post tsunami resilience and recolonization of mangroves in South Andaman, India. Wetlands. https://doi.org/10.1007/s13157-019-01211-5

  • Shiva Shankar V, NeelamPurti, Narshimulu G, Mandal KK, Singh PR, Kaviarasan T, Satyakeerthy TR, Jacob S (2022) Assessment of the hydrological and erosive status of South Andaman’s watersheds using drainage morphometric studies and climatic water balance model. Geocarto Int. https://doi.org/10.1080/10106049.2022.2076927

    Article  Google Scholar 

  • Shiva Shankar V, Purti N, Singh RP, Khudsar FA (2020) Secondary ecological succession of mangrove in the 2004 tsunami created wetlands of south Andaman, India. Intecopen. https://doi.org/10.5772/intechopen.94113

  • Simms RA, DeWitt R, Zurbuchen J, Vaughan P (2017) Coastal erosion and recovery from a Cascadia subduction zone earthquake and tsunami. Mar Geol 392:30–40

    Article  ADS  Google Scholar 

  • Stein S, Okal EA (2005) Size and speed of the Sumatra earthquake. Nature 434:581–582

    Article  ADS  CAS  PubMed  Google Scholar 

  • Subarya CM, Chlieh L, Prawirodirdjo J, Avouac Y, Bock K, Sieh AJ, Meltzner D, Natawidjaja H, McCaffrey R (2006) Plate-boundary deformation associated with the great Sumatra-Andaman earthquake. Nature 440:46–51. https://doi.org/10.1038/nature04522

    Article  ADS  CAS  PubMed  Google Scholar 

  • Thieler ER, Danforth WW (1994) Historical shoreline mapping (I): improving techniques and reducing positioning errors. J Coastal Res 10(3):549–563

    Google Scholar 

  • Thieler ER, Himmelstoss EA, Zichichi JL, Ergul A (2009) The Digital Shoreline Analysis System (DSAS) Version 4.0-an ArcGIS Extension for calculating Shoreline Change. US Geological Survey Open-File Report 2008 – 1278

  • Thoai DT, Dang AN, Oanh NTK (2019) Analysis of coastline change in relation to meteorological conditions and human activities in ca mau cape, Viet Nam. Ocean Coastal Manage 171:56–65. https://doi.org/10.1016/j.ocecoaman.2019.01.007

    Article  Google Scholar 

  • Winterwerp JC, Erftemeijer PLA, Suryadiputra N, Van Eijk P, Zhang L (2013) Defining eco-morphodynamic requirements for rehabilitating eroding mangrove-mud coasts. Wetlands 33:515–526

    Article  Google Scholar 

  • Yunus AP, Narayana AC (2014) Short-term morphological and shoreline changes at Trinkat island, Andaman and Nicobar, India, after the 2004 tsunami. Mar Geodesy 38(1):26–39

    Google Scholar 

  • Yunus AP, Dou J, Avtar R, Narayana AC (2016) Shoreline and Coastal Morphological Changes Induced by the 2004 Indian Ocean Tsunami in the Katchal Island, Andaman and Nicobar – A Study Using Archived Satellite Images. Chapter in Tsunamis and Earthquakes in Coastal Environments, Coastal Research Library 14. In: Santiago-Fandiño V et al (eds). https://doi.org/10.1007/978-3-319-28528-3_5

  • Yuvaraj E, Dharanirajan K, Jayakumar S, Saravanan (2014) Geomorphic settings of mangrove ecosystem in South Andaman Island: a geospatial approach. J Earth Syst Sci 123(8):1819–1830. https://doi.org/10.1007/s12040-014-0503-3

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Hans Uwe Dahms affiliated to Department of Biomedical Science & Environmental Biology and Research centre for Environmental medicine, Kaohsiung Medical University, Taiwan for correcting the language fluency of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Narshimulu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial or personal relationships that could have appeared to influence the work reported in this research article. The presented article is a chapter in the doctoral research of the first author. All the co-authors significantly contributed to this research.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narshimulu, G., Shankar, V.S., Purti, N. et al. Appraisal of 2004 tsunami induced shoreline change in South Andaman, India using DSAS. J Coast Conserv 28, 36 (2024). https://doi.org/10.1007/s11852-024-01029-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11852-024-01029-2

Keywords

Navigation