Skip to main content

Advertisement

Log in

Error determination in the photogrammetric assessment of shoreline changes

  • Short Communication
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The evaluation of error or uncertainty in shoreline change studies is an issue of prime importance for providing an adequate framework for calculated rates of change and to allow the establishment of threshold values above which the rates would be significant. In this note, a practical, easy-to-use method is presented to estimate error involved in the calculation of shoreline changes on aerial photographs, including the three most used types of shoreline indicators: high water line, dune/cliff toe and cliff top. This approach takes into account the specific characteristics of each shoreline proxy, such as relief in the case of the cliff top or tidal oscillations in the case of the high water line. At the same time it includes the error components that are independent from the proxy, basically related to the technical aspects of the process such as photo scanning and georeferencing. A practical example of application of the method is provided for several types of data inputs, based on shoreline changes around the Bay of Cádiz (SW Spain).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Allan JC, Komar PD, Priest GR (2003) Shoreline variability on the high-energy Oregon coast and its usefulness in erosion-hazard assessments. J Coast Res SI 38:83–105

    Google Scholar 

  • Anders FJ, Byrnes MR (1991) Accuracy of shoreline change rates as determined from maps and aerial photographs. Shore and Beach 59(1):17–25

    Google Scholar 

  • Boak EH, Turner IL (2005) Shoreline definition and detection: a review. J Coast Res 21(4):688–703

    Article  Google Scholar 

  • Catalão J, Catita C, Miranda J, Dias JA (2002) Photogrammetric analysis of coastal erosion in the Algarve (Portugal). Geomorphologie 2:119–126

    Article  Google Scholar 

  • Cooper JAG, Anfuso G, Del Río L (2009) Bad beach management: European perspectives. Geol Soc Am S 460:167–179

    Google Scholar 

  • Coyne MA, Fletcher CH, Richmond BM (1999) Mapping coastal erosion hazards in Hawaii: observations and errors. J Coastal Res SI 28:171–184

    Google Scholar 

  • Crowell M, Leatherman SP, Buckley MK (1991) Historical shoreline change: error analysis and mapping accuracy. J Coast Res 7(3):839–852

    Google Scholar 

  • Crowell M, Leatherman SP, Buckley MK (1993) Shoreline change rate analysis: long term versus short term data. Shore and Beach 61(2):13–20

    Google Scholar 

  • Crowell M, Douglas BC, Leatherman S (1997) On forecasting future US shoreline positions: a test of algorithms. J Coast Res 13(4):1245–1255

    Google Scholar 

  • Del Río L (2007) Riesgos de erosión costera en el litoral atlántico gaditano. PhD Dissertation, Universidad de Cádiz

  • Del Río L, Gracia FJ (2009) Erosion risk assessment of active coastal cliffs in temperate environments. Geomorphology 112:82–95

    Article  Google Scholar 

  • Del Río L, Gracia FJ, Benavente J (2012) Shoreline change patterns in sandy coasts: a case study in SW Spain. Geomorphology. doi:10.1016/j.geomorph.2012.07.027

  • Dolan R, Fenster MS, Holme SJ (1991) Temporal analysis of shoreline recession and accretion. J Coast Res 7(3):723–744

    Google Scholar 

  • Fenster MS, Dolan R, Morton RA (2001) Coastal storms and shoreline change: signal or noise? J Coast Res 17(3):714–720

    Google Scholar 

  • Ferreira O, García T, Matias A, Taborda R, Alveirinho Dias J (2006) An integrated method for the determination of set-back lines for coastal erosion hazards on sandy shores. Cont Shelf Res 26:1030–1044

    Article  Google Scholar 

  • Fletcher C, Rooney J, Barbee M, Lim S, Richmond BM (2003) Mapping shoreline change using digital ortophotogrammetry on Maui, Hawaii. J Coast Res SI 38:106–124

    Google Scholar 

  • Garcia T, Ferreira O, Matias A, Alveirinho Dias J (2010) Overwash vulnerability assessment based on long-term washover evolution. Nat Hazards 54(2):225–244

    Article  Google Scholar 

  • Genz AS, Fletcher CH, Dunn RA, Frazer LN, Rooney J (2007) The predictive accuracy of shoreline change rate methods and alongshore beach variation on Maui, Hawaii. J Coast Res 23(1):87–105

    Article  Google Scholar 

  • Gorman L, Morang A, Larson R (1998) Monitoring the coastal environment. Part IV: mapping, shoreline changes, and bathymetric analysis. J Coast Res 14(1):61–92

    Google Scholar 

  • Hapke CJ, Richmond BM (2000) Monitoring beach morphology changes using small-format aerial photography and digital softcopy photogrammetry. Environ Geosci 7(1):32–37

    Article  Google Scholar 

  • Honeycutt MG, Crowell M, Douglas BC (2001) Shoreline-position forecasting: impact of storms, rate-calculation methodologies, and temporal scales. J Coast Res 17(3):721–730

    Google Scholar 

  • Hughes ML, McDowell PF, Marcus WA (2006) Accuracy assessment of georectified aerial photographs: implications for measuring lateral channel movement in a GIS. Geomorphology 74:1–16

    Article  Google Scholar 

  • Lehmbeck DR, Urbach JC (2004) Image quality for scanning. In: Marshall GF (ed) Handbook of optical and laser scanning. Taylor and Francis, New York, pp 154–300

    Google Scholar 

  • Moore LJ (2000) Shoreline mapping techniques. J Coast Res 16(1):111–124

    Google Scholar 

  • Moore LJ, Griggs GB (2002) Long-term cliff retreat and erosion hotspots along the central shores of the Monterey Bay National Marine Sanctuary. Mar Geol 181:265–283

    Article  Google Scholar 

  • Morton RA, Miller TA, Moore LJ (2004) National assessment of shoreline change: Part 1—Historical shoreline changes and associated coastal land loss along the US Gulf of Mexico. USGS OFR 2004-1043

  • Muñoz JJ, de San Román BL, Gutiérrez-Mas JM, Moreno L, Cuena GJ (2001) Cost of beach maintenance in the Gulf of Cádiz (SW Spain). Coast Eng 42:143–153

    Article  Google Scholar 

  • Pajak MJ, Leatherman SP (2002) The high water line as shoreline indicator. J Coast Res 18(2):329–337

    Google Scholar 

  • Pierre G (2006) Processes and rate of retreat of the clay and sandstone sea cliffs of the northern Boulonnais (France). Geomorphology 73(1–2):64–77

    Article  Google Scholar 

  • Schwarzer K, Diesing M, Larson M, Niedermeyer R, Schumacher W, Furmanczyk K (2003) Coastline evolution at different time scales—examples from the Pomeranian Bight, southern Baltic Sea. Mar Geol 194:79–101

    Article  Google Scholar 

  • Shoshany M, Golik A, Degani A, Lavee H, Gvirtzman G (1996) New evidence for sand transport direction along the coastline of Israel. J Coast Res 12(1):311–325

    Google Scholar 

  • Stathopoulou M, Cartalis C (2009) Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation. Remote Sens Environ 113(12):2592–2605

    Article  Google Scholar 

  • Thieler ER, Danforth WW (1994) Historical shoreline mapping (I): improving techniques and reducing positioning errors. J Coast Res 10(3):549–563

    Google Scholar 

  • Thieler ER, Himmelstoss EA, Zichichi JL, Miller TL (2005) Digital Shoreline Analysis System (DSAS) version 3.0: An ArcGIS extension for calculating shoreline change. USGS Open-File Report 2005-1304

  • Vanderstraete T, Goosens R, Ghabour TK (2003) Remote sensing as a tool for bathymetric mapping of coral reefs in the Red Sea (Hurghada—Egypt). BELGEO 3:257–267

    Google Scholar 

  • Weeks AR (1996) Fundamentals of electronic image processing. SPIE Optical Engineering Press, Bellingham

    Book  Google Scholar 

  • Wolf PR, Dewitt BA (2000) Elements of photogrammetry with applications in GIS. McGraw-Hill, Madison

    Google Scholar 

  • Zviely D, Klein M (2004) Coastal cliff retreat rates at Beit-Yannay, Israel, in the 20th century. Earth Surf Proc Land 29:175–184

    Article  Google Scholar 

Download references

Acknowledgments

This work is a contribution to the research group RNM-328 of the Andalusian Research Plan (PAI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Del Río.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Río, L., Gracia, F.J. Error determination in the photogrammetric assessment of shoreline changes. Nat Hazards 65, 2385–2397 (2013). https://doi.org/10.1007/s11069-012-0407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-012-0407-y

Keywords

Navigation