Skip to main content

Advertisement

Log in

Circulating miR-342-5p serves as a diagnostic biomarker in patients with carotid artery stenosis and predicts the occurrence of the cerebral ischemic event

  • Original Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Background

Carotid artery stenosis (CAS) is an important risk factor for cerebral ischemia events (CIE). Previous studies have shown that microRNAs (miRNAs) are involved in the occurrence and development of CAS.

Aims

The purpose of this study was to reveal the clinical diagnostic value of miR-342-5p for asymptomatic CAS (ACAS) and to evaluate its predictive value for the occurrence of CIE in patients.

Methods

A total of 92 ACAS patients and 86 healthy controls were enrolled as subjects. The expression level of serum miR-342-5p was detected by qRT-PCR. The receiver operating characteristic (ROC) curve was used to detect the diagnostic value of miR-342-5p in ACAS. Kaplan–Meier survival and Cox regression analysis assessed the predictive value of miR-342-5p for the occurrence of CIE in ACAS patients.

Results

The level of serum miR-342-5p in ACAS patients was significantly higher than that in healthy controls (P < 0.05). ROC curve showed the high diagnostic value of serum miR-342-5p, which could distinguish ACAS patients from healthy controls. Multivariate Cox regression analysis confirmed that miR-342-5p was an independent predictor (HR = 5.512, 95%CI = 1.370–22.176, P = 0.016). What is more, Kaplan–Meier analysis confirmed that patients with high miR-342-5p expression develop more CIE (log-rank, P = 0.020).

Conclusions

miR-342-5p was significantly overexpressed in ACAS. And the upregulation of serum miR-342-5p is a valuable diagnostic biomarker and can predict the occurrence of CIE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Please get the data and material from the corresponding author if necessary.

References

  1. Fairhead JF, Rothwell PM (2005) The need for urgency in identification and treatment of symptomatic carotid stenosis is already established. Cerebrovasc Dis 19:355–358

    Article  CAS  Google Scholar 

  2. Badacz R, Kablak-Ziembicka A, Urbanczyk-Zawadzka M et al (2017) Magnetic resonance imaging and clinical outcome in patients with symptomatic carotid artery stenosis after carotid artery revascularization. Postepy Kardiol Interwencyjnej 13:225–232

    PubMed  PubMed Central  Google Scholar 

  3. Dolz S, Gorriz D, Tembl JI et al (2017) Circulating microRNAs as novel biomarkers of stenosis progression in asymptomatic carotid stenosis. Stroke 48:10–16

    Article  CAS  Google Scholar 

  4. Brinjikji W, Huston J 3rd, Rabinstein AA et al (2016) Contemporary carotid imaging: from degree of stenosis to plaque vulnerability. J Neurosurg 124:27–42

    Article  CAS  Google Scholar 

  5. Montorsi P, Galli S, Ravagnani PM et al (2017) Symptomatic Carotid Artery Disease: Revascularization. Prog Cardiovasc Dis 59:601–611

    Article  Google Scholar 

  6. Bernardo BC, Ooi JY, Lin RC et al (2015) miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med Chem 7:1771–1792

    Article  CAS  Google Scholar 

  7. Yang Y, Yujiao W, Fang W et al (2020) The roles of miRNA, lncRNA and circRNA in the development of osteoporosis. Biol Res 53:40

    Article  CAS  Google Scholar 

  8. Han Z, Hu H, Yin M et al (2018) miR-145 is critical for modulation of vascular smooth muscle cell proliferation in human carotid artery stenosis. J Biol Regul Homeost Agents 32:506–516

    CAS  PubMed  Google Scholar 

  9. Mu J, Cheng X, Zhong S et al (2020) Neuroprotective effects of miR-532-5p against ischemic stroke. Metab Brain Dis 35:753–763

    Article  CAS  Google Scholar 

  10. Nosalski R, Siedlinski M, Denby L et al (2020) T-cell-derived miRNA-214 mediates perivascular fibrosis in hypertension. Circ Res 126:988–1003

    Article  CAS  Google Scholar 

  11. Wu G, Zhang J, Fan GG et al (2020) MiRNA-324-5p inhibits inflammatory response of diabetic vessels by targeting CPT1A. Eur Rev Med Pharmacol Sci 24:12836–12843

    CAS  PubMed  Google Scholar 

  12. Alles J, Fehlmann T, Fischer U et al (2019) An estimate of the total number of true human miRNAs. Nucleic Acids Res 47:3353–3364

    Article  CAS  Google Scholar 

  13. Wang Y, Ma Z, Kan P et al (2017) The diagnostic value of serum miRNA-221-3p, miRNA-382-5p, and miRNA-4271 in ischemic stroke. J Stroke Cerebrovasc Dis 26:1055–1060

    Article  Google Scholar 

  14. Wei Y, Nazari-Jahantigh M, Chan L et al (2013) The microRNA-342-5p fosters inflammatory macrophage activation through an Akt1- and microRNA-155-dependent pathway during atherosclerosis. Circulation 127:1609–1619

    Article  CAS  Google Scholar 

  15. Xing X, Li Z, Yang X et al (2020) Adipose-derived mesenchymal stem cells-derived exosome-mediated microRNA-342-5p protects endothelial cells against atherosclerosis. Aging (Albany NY) 12:3880–3898

    Article  CAS  Google Scholar 

  16. Palamuthusingam D, Quigley F, Golledge J (2011) Implications of the finding of no significant carotid stenosis based on data from a regional Australian vascular unit. Ann Vasc Surg 25:1050–1056

    Article  Google Scholar 

  17. Carreira M, Duarte-Gamas L, Rocha-Neves J et al (2020) Management of the carotid artery stenosis in asymptomatic patients. Rev Port Cir Cardiotorac Vasc 27:159–166

    PubMed  Google Scholar 

  18. Chaker S, Al-Dasuqi K, Baradaran H et al (2019) Carotid plaque positron emission tomography imaging and cerebral ischemic disease. Stroke 50:2072–2079

    Article  Google Scholar 

  19. Mathers C, Stevens G, Hogan D et al (2017) Global and regional causes of death: patterns and trends, 2000–15. In: rd, Jamison DT, Gelband H, Horton S, Jha P, Laxminarayan R, et al., editors. Disease control priorities: improving health and reducing poverty. Washington (DC)

  20. Meissner I, Meyer FB (1994) Carotid stenosis and carotid endarterectomy. Cerebrovasc Brain Metab Rev 6:163–179

    CAS  PubMed  Google Scholar 

  21. Berman SS, Bernhard VM, Erly WK et al (1994) Critical carotid artery stenosis: diagnosis, timing of surgery, and outcome. J Vasc Surg 20: 499–508; discussion -10

  22. Kelly R (1992) Selections from current literature: prevention of stroke in non-rheumatic atrial fibrillation and carotid artery stenosis. Fam Pract 9:231–236

    Article  CAS  Google Scholar 

  23. Sherman DG (1989) The carotid artery and stroke. Am Fam Physician 40: 41S-4S, 7S-9S

  24. Ahmadi R, Heidarian E, Fadaei R et al (2018) miR-342-5p expression levels in coronary artery disease patients and its association with inflammatory cytokines. Clin Lab 64:603–609

    Article  CAS  Google Scholar 

  25. Tang S, Wang Y, Xie G et al (2020) Regulation of Ptch1 by miR-342-5p and FoxO3 induced autophagy involved in renal fibrosis. Front Bioeng Biotechnol 8:583318

    Article  Google Scholar 

  26. Sun X, Wu Y, Gu M et al (2014) miR-342-5p decreases ankyrin G levels in Alzheimer’s disease transgenic mouse models. Cell Rep 6:264–270

    Article  CAS  Google Scholar 

  27. Agrawal S, Tapmeier T, Rahmioglu N et al (2018) The miRNA mirage: how close are we to finding a non-invasive diagnostic biomarker in endometriosis? a systematic review. Int J Mol Sci 19

  28. Backes C, Meese E, Keller A (2016) Specific miRNA disease biomarkers in blood, serum and plasma: challenges and prospects. Mol Diagn Ther 20:509–518

    Article  CAS  Google Scholar 

  29. Chen YL, Sheu JJ, Sun CK et al (2020) MicroRNA-214 modulates the senescence of vascular smooth muscle cells in carotid artery stenosis. Mol Med 26:46

    Article  Google Scholar 

  30. Han Z, Li Y, Zhang J et al (2020) Tumor-derived circulating exosomal miR-342-5p and miR-574-5p as promising diagnostic biomarkers for early-stage lung adenocarcinoma. Int J Med Sci 17:1428–1438

    Article  CAS  Google Scholar 

  31. Bi S, Peng Q, Liu W et al (2020) MicroRNA-342-5p activates the Akt signaling pathway by downregulating PIK3R1 to modify the proliferation and differentiation of vascular smooth muscle cells. Exp Ther Med 20:239

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yue Y, Ma K, Li Z et al (2018) Angiotensin II type 1 receptor-associated protein regulates carotid intimal hyperplasia through controlling apoptosis of vascular smooth muscle cells. Biochem Biophys Res Commun 495:2030–2037

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aihua Zhou.

Ethics declarations

Ethics approval

The study protocol was approved and authorized by the Ethics Committee of Affiliated Hospital of Weifang Medical University. The procedures of the patients involved in the study followed the guidelines of the Declaration of Helsinki.

Consent to participate

The patients signed and provided informed consent.

Consent for publication

The patients signed and provided informed consent.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, A., Li, Y., Wang, P. et al. Circulating miR-342-5p serves as a diagnostic biomarker in patients with carotid artery stenosis and predicts the occurrence of the cerebral ischemic event. Ir J Med Sci 191, 713–718 (2022). https://doi.org/10.1007/s11845-021-02623-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-021-02623-1

Keywords

Navigation