Skip to main content

Advertisement

Log in

Kidney-gut crosstalk in renal disease

  • Review Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Introduction

The colon has an important role in managing nitrogenous waste products, electrolytes, and mineral balance during kidney diseases. However, colonic microbiota produces uremic toxins, such as indoxyl sulfate and p-cresyl sulfate, in chronic kidney disease (CKD) patients, which due to their proinflammatory properties contribute to CKD progression. Conversely, in acute renal injury patients, intestinal microbiota could reduce inflammation by secreting short-chain fatty acids and inducing a renal protective immune response. However, since the intestines are the most frequently affected organ in advanced sepsis, colonic microbiota can also represent a negative factor for kidney health in this scenario.

Conclusion

In the present review, the main characteristics of kidney-gut crosstalk are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Muso CG (2020) Biosemiotic medicine: from an effect-based medicine to a process-based medicine. Arch Argent Pediatr 118(5):e449–e453

    Google Scholar 

  2. Poesen R, Meijers B, Evenepoel P (2013) The colon: an overlooked site for therapeutics in dialysis patients. Semin Dial 26(3):323–332

    Article  Google Scholar 

  3. Ranganathan N, Ranganathan P, Friedman EA et al (2010) Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv Ther 27(9):634–647. https://doi.org/10.1007/s12325-010-0059-9

    Article  PubMed  Google Scholar 

  4. Musso CG (2004) Potassium metabolism in patients with chronic kidney disease. Part II: patients on dialysis (stage 5). Int Urol Nephrol 36(3):469–472

    Article  CAS  Google Scholar 

  5. Vaziri ND (2016) Effect of synbiotic therapy on gut-derived uremic toxins and the intestinal microbiome in patients with CKD. Clin J Am Soc Nephrol 11(2):199–201

    Article  CAS  Google Scholar 

  6. Mafra D, Lobo JC, Barros AF et al (2014) Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiol 9(3):399–410

    Article  CAS  Google Scholar 

  7. Gong J, Noel S, Pluznick J, Hamad A et al (2019) Gut microbiota-kidney cross-talk in acute kidney injury. Semin Nephrol 39(1):107–116

    Article  CAS  Google Scholar 

  8. Evenepoel P, Meijers BKI, Bammens BRM, Verbeke K (2009) Uremic toxins originating from colonic microbial metabolism. Kidney Int Suppl 114:S12–S19

    Article  CAS  Google Scholar 

  9. Crespo-Salgado J, Vehaskari VM, Stewart T et al (2016) Intestinal microbiota in pediatric patients with end stage renal disease: a Midwest Pediatric Nephrology Consortium study. Microbiome. 4(1):50

    Article  Google Scholar 

  10. de Andrade L, Ishikawa-Ramos C, Cuppari L (2017) The cross-talk between the kidney and the gut: implications for chronic kidney disease. Nutrire 42(27):2–14. https://doi.org/10.1186/s41110-017-0054-x

    Article  CAS  Google Scholar 

  11. Kanbay M, Onal E, Afsar B et al (2018) The crosstalk of gut microbiota and chronic kidney disease: role of inflammation, proteinuria, hypertension, and diabetes mellitus. Int Urol Nephrol 50:1453–1466. https://doi.org/10.1007/s11255-018-1873-2

    Article  PubMed  Google Scholar 

  12. Pahl MV, Vaziri ND (2015) The chronic kidney disease-colonic axis. Semin Dial 28:459–463

    Article  Google Scholar 

  13. Ritz E (2011) Intestinal-renal syndrome: mirage or reality? Blood Purif 31:70–76

    Article  Google Scholar 

  14. Sirich TL (2015) Dietary protein and fiber in end stage renal disease. Semin Dial 28(1):75–80. https://doi.org/10.1111/sdi.12315

    Article  PubMed  Google Scholar 

  15. Meyer TW, Hostetter TH (2012) Uremic solutes from colon microbes. Kidney Int 81(10):949–954

    Article  CAS  Google Scholar 

  16. Soulage CO, Koppe L, Fouque D (2013) Protein-bound uremic toxins. New targets to prevent insulin resistance and dysmetabolism in patients with chronic kidney disease. J Ren Nutr 23:464–466

    Article  CAS  Google Scholar 

  17. Neirynck N, Glorieux G, Schepers E et al (2013) Review of protein-bound toxins, possibility for blood purification therapy. Blood Purif 35:45–50

    Article  CAS  Google Scholar 

  18. Niwa T (2011) Role of indoxyl sulfate in the progression of chronic kidney disease and cardiovascular disease: experimental and clinical effects of oral sorbent AST-120. Ther Apher Dial 15:120–124

    Article  CAS  Google Scholar 

  19. Niwa T (2013) Targeting protein-bound uremic toxins in chronic kidney disease. Expert Opin Ther Targets 17(11):1287–1301

    Article  CAS  Google Scholar 

  20. Aronov PA, Luo FJ, Plummer NS et al (2011) Colonic contribution to uremic solutes. J Am Soc Nephrol 22:1769–1776

    Article  CAS  Google Scholar 

  21. Leong S, Sirich T (2016) Indoxyl sulfate-review of toxicity and therapeutic strategies. Toxins (Basel) 8(12):E35

    Article  Google Scholar 

  22. Risso MA, Sallustio S, Sueiro V et al (2019) The Importance of tubular function in chronic kidney disease. Int J Nephrol Renov Dis 12:257–262. https://doi.org/10.2147/IJNRD.S216673

    Article  CAS  Google Scholar 

  23. Enomoto A, Takeda M, Tojo A et al (2002) Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity. J Am Soc Nephrol 13(7):1711–1720

    Article  CAS  Google Scholar 

  24. Zhang J, Ankawi G, Sun J et al (2018) Gut-kidney crosstalk in septic acute kidney injury. Crit Care 22(1):117. https://doi.org/10.1186/s13054-018-2040-y

    Article  PubMed  PubMed Central  Google Scholar 

  25. Meyer TW, Hostetter TH (2007) Uremia. N Engl J Med 357(13):1316–1325

    Article  CAS  Google Scholar 

  26. Patel K, Luo F, Plummer N et al (2012) The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clin J Am Soc Nephrol 7:982–988. https://doi.org/10.2215/CJN.12491211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sirich TL, Plummer NS, Gardner CD et al (2014) Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin J Am Soc Nephrol 9(9):1603–1610

    Article  CAS  Google Scholar 

  28. Vaziri ND, Liu SM, Lau WL et al (2014) High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS One 9(12):e114881

    Article  Google Scholar 

  29. Marzocco S, Dal Piaz F, Di Micco L et al (2013) Very low protein diet reduces indoxyl sulfate levels in chronic kidney disease. Blood Purif 35:196–201

    Article  CAS  Google Scholar 

  30. Rossi M, Johnson D, Morrison M et al (2016) Synbiotics easing renal failure by improving gut microbiology (SYNERGY): a randomized trial. Clin J Am Soc Nephrol 11:223–231. https://doi.org/10.2215/CJN.05240515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Meijers B, De Preter V, Verbeke K et al (2010) p-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol Dial Transplant 25:219–224. https://doi.org/10.1093/ndt/gfp414

    Article  CAS  PubMed  Google Scholar 

  32. Shoji T, Wada A, Inoue K et al (2007) Prospective randomized study evaluating the efficacy of the spherical adsorptive carbon AST-120 in chronic kidney disease patients with moderate decrease in renal function. Nephron Clin Pract 105:c99–c107. https://doi.org/10.1159/000097985

    Article  CAS  PubMed  Google Scholar 

  33. Madero M, Cano KB, Campos I et al (2019) Removal of protein bound uremic toxins during hemodialysis using a binding competitor. Clin J Am Soc Nephrol 14(3):394–402. https://doi.org/10.2215/CJN.05240418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cornelis T, Eloot S, Vanholder R et al (2015) Protein-bound uraemic toxins, dicarbonyl stress and advanced glycation end products in conventional and extended haemodialysis and haemodiafiltration. Nephrol Dial Transplant 30(8):1395–1402. https://doi.org/10.1093/ndt/gfv038

    Article  CAS  PubMed  Google Scholar 

  35. Camacho O, Rosales M, Shafi T et al (2016) Effect of a sustained difference in hemodialytic clearance on the plasma levels of p-cresol sulfate and indoxyl sulfate. Nephrol Dial Transplant 31:1335–1341. https://doi.org/10.1093/ndt/gfw100

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos G. Musso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This paper is a review article, so it was not a research involving human participants and/or animals nor had a need of an informed consent.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombo, I., Aiello-Battan, F., Elena, R. et al. Kidney-gut crosstalk in renal disease. Ir J Med Sci 190, 1205–1212 (2021). https://doi.org/10.1007/s11845-020-02437-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-020-02437-7

Keywords

Navigation