Skip to main content
Log in

The fracture toughness and fatigue behavior of DRA

  • Research Summary
  • DRA Composites
  • Published:
JOM Aims and scope Submit manuscript

Abstract

‘In this study, the fracture toughness and elevated-temperature tensile and fatigue behavior of discontinuously reinforced aluminum (DRA) were examined. The effects of heat treatment and specimen thickness on fracture toughness were studied in a 7093/SiCp composite. The toughness of the DRA was lowest in the peak-aged condition, but increased considerably in the overaged condition. The highest toughness was obtained at a critical value of specimen thickness; this critical value was used to fabricate a laminated composite consisting of alternating layers of DRA and unreinforced alloy. Elevated-temperature tensile and fatigue behaviors were investigated in a 2080-T6/SiCp composite at different volume fractions and particle sizes. Increasing reinforcement volume fractions resulted in increases in tensile and fatigue strength. Exposure tests for 300 h at 150°C produced no significant reduction in ultimate tensile strength or yield strength, indicating good thermal stability of the 2080 matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.W. Clyne and P.J. Withers, An Introduction to Metal Matrix Composites (New York: Cambridge University Press, 1993).

    Google Scholar 

  2. K.K. Chawla, Composite Materials—Science and Engineering (New York: Springer-Verlag, 1997).

    Google Scholar 

  3. M.J. Kozack et al., Fundamentals of Metal Matrix Composites, ed. S. Suresh, A. Mortensen, and A. Needleman (Stoneham, MA: Butterworth-Heinemann, 1993), pp. 297–326.

    Google Scholar 

  4. W.H. Hunt, Jr., T.M. Osman, and J.J. Lewandowski, JOM, 30 (1993), pp. 30–35.

    Google Scholar 

  5. J. Llorca et al., Metall. Trans. A, 24 A (1993), pp. 1575–1588.

    Google Scholar 

  6. J.J. Lewandowski, C. Liu, and W.H. Hunt, Jr., Mater. Sci. Eng. A, 107 A (1989), pp. 241–255.

    Google Scholar 

  7. J.J. Lewandowski and P.M. Singh, Intrinsic and Extrinsic Fracture Mechanisms in Inorganic Composite Systems, ed. J.J. Lewandowski and W.H. Hount, Jr. (Warrendale, PA: TMS, 1995), pp. 129–146.

    Google Scholar 

  8. A.B. Pandey, B.S. Majumdar, and D.B. Miracle, Metall. and Mater. Trans. A. (in press).

  9. B.S. Majumdar and A.B. Pandey, Metall. and Mater. Trans. A (in press).

  10. I. Dutta et al., Metall. Mater. Trans. A (submitted 1998).

  11. A.B. Pandey, B.S. Majumdar, and D.B. Miracle, Mater. Sci. Eng. A, 259 A (1999), pp. 296–307.

    Google Scholar 

  12. A.B. Pandey, B.S. Majumdar, D.B. Miracle, unpublished work.

  13. D.R. Lesuer et al., Intern. Metals Rev., 41 (1996), pp. 169–197.

    CAS  Google Scholar 

  14. J.E. Allison and J.W. Jones, Fundamentals of Metal Matrix Composites, ed. S. Suresh, A. Mortensen, and A. Needleman (Stoneham, MA: Butterworth Heinemann, 1993), pp. 269–294.

    Google Scholar 

  15. J.E. Allison, L.C. Davis, and J.W. Jones, Composites Engineering Handbook (New York: Marcel Dekker, 1997), p. 941.

    Google Scholar 

  16. J. Hall, J.W. Jones, and A. Sachdev, Mater. Sci. Eng. A, 183 A (1994), pp. 69–80.

    Google Scholar 

  17. N.L. Han, Z.G. Wang, and L. Sun, Scripta Met. Mater., 33 (1995), pp. 781–788.

    Article  CAS  Google Scholar 

  18. A.R. Vaidya and J.J. Lewandowski, Mater. Sci. Eng. A, 220 A (1996), pp. 85–92.

    Google Scholar 

  19. N. Chawla et al., Metall. & Mater. Trans. A. (in press).

  20. N. Chawla et al., Metall. Mater. Trans. A, 29 A (1998), pp. 2843–2854.

    Article  Google Scholar 

  21. W.H. Hunt, Jr., C.R. Cook, and R.R. Sawtell, Proc. of SAE International, SAE paper 910834 (Warrendale, PA: SAE, 1991).

    Google Scholar 

  22. T.G. Nieh, D.R. Lesuer, and C.K. Syn, Scripta Metall. et Mater., 32 (1995), pp. 707–712.

    Article  CAS  Google Scholar 

  23. H. Ishii et al., Asian Pacific Conf. on Fracture and Strength (1993), p. 47.

  24. G.M. Vyletel, D.C. VanAken, and J.E. Allison, Metall. Trans. A, 26 A (1995), pp. 3155–3162.

    Google Scholar 

  25. R.J. Arsenault and S.B. Wu, Scripta Metall, 22 (1988), pp. 767–772.

    Article  CAS  Google Scholar 

  26. V.C. Nardone and K.M. Prewo, Scripta Metall. 20 (1986), pp. 43–48.

    Article  CAS  Google Scholar 

  27. G.T. Hahn and A.R. Rosenfield, Metall. Trans. A, 6A (1975), pp. 653–670.

    CAS  Google Scholar 

  28. A.B. Pandey, B.S. Majumdar, and D.B. Miracle, Metall. and Mater. Trans. A, 29 A (1998), pp. 1237–1243.

    Article  Google Scholar 

  29. N. Chawla et al., Metall. Mater. Trans. A (in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact A.B. Pandey, Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433; (937) 255-1320; fax (937) 255-3007; e-mail awadh.pandey@ml.afrl.af.mil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, A.B., Chawla, N. The fracture toughness and fatigue behavior of DRA. JOM 51, 69–72 (1999). https://doi.org/10.1007/s11837-999-0228-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-999-0228-y

Keywords

Navigation