Skip to main content
Log in

Low dielectric constant materials for advanced interconnects

  • Overview
  • Low Dielectric Constant Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Materials with low dielectric constants are being developed to replace silicon dioxide as interlevel dielectrics. This paper discusses material issues and the characterization of low-k materials for integration into advanced interconnects. Measurement techniques for the characterization of low-k films are discussed, and the results for several classes of low-k materials are presented. The properties of these materials are discussed in relation to structure-property relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.T. Bohr, Mat. Res. Soc. Sym. (Warrendale, PA: MRS, 1996), p. 3.

    Google Scholar 

  2. D.C. Edelstein, G.A. Sai-Halasz, and Y.-J. Mii, IBM J. Res. Develop., 39 (4) (1995), p. 383.

    Google Scholar 

  3. J.G. Ryan et al., IBM J. Res. Develop., 39 (4) (1995), p. 371.

    Google Scholar 

  4. D. Edelstein et al., Proc. IEEE International Electron Device Meeting (New York: IEEE, 1997), p. 773.

    Google Scholar 

  5. S. Venkatesan et al., IEEE International Electron Device Meeting (New York: IEEE, 1997), pp. 769.

    Google Scholar 

  6. K.J. Miller et al., Macromolecules, 23 (1990), p. 3855.

    Article  CAS  Google Scholar 

  7. S.H. Pine, Organic Chemistry, 5th ed. (New York: McGraw-Hill, 1987).

    Google Scholar 

  8. G. Hougham et al., Macromolecules, 27 (1994), p. 5964.

    Article  CAS  Google Scholar 

  9. W.W. Lee and P.S. Ho, MRS Bulletin, 22 (1997), p. 19.

    CAS  Google Scholar 

  10. G.W. Ray, Mat. Res. Soc. Symp. Proc., 511 (Warrendale, PA: MRS, 1998), p. 199.

    Google Scholar 

  11. R. Fox and J.P. Pellerin, unpublished observations.

  12. J.P. Hummel, Advanced Multilevel Metallization Materials Properties Issues for Copper Integration, vol. 6, ed. C.S. Schuckert (Wilmington, DE: 1995).

  13. P.S. Ho and T. Kwok, Rep. Prog. Phys., 52 (1989), p. 301.

    Article  CAS  Google Scholar 

  14. C.-K. Hu et al., IBM J. Res. Develop., 39 (1995), p. 465.

    CAS  Google Scholar 

  15. S.R. Wilson and C.J. Tracy, eds., Handbook of Multilevel Metallization for Integrated Circuits (Park Ridge, NJ: Noyes Publications, 1993).

    Google Scholar 

  16. W.-Y. Shih et al., Mat. Res. Soc. Sym. (Warrendale, PA: MRS, 1996), p. 479.

    Google Scholar 

  17. W. Shih, J. Levine, and M. Chang, Advanced Metallization and Interconnect Systems for ULSI Applications in 1996, ed. R. Havemann et al. (Pittsburgh, PA: MRS, 1996).

    Google Scholar 

  18. S. Jeng et al., Advanced Metallization and Interconnect Systems for ULSI Applications in 1995, ed. R. Ellwanger and S. Wang (Pittsburgh, PA: MRS, 1996).

    Google Scholar 

  19. J. Leu, T.-M. Lu, and P.S. Ho, Low Dielectric Constant Materials for Deep-Submicron Interconnects Applications (Pittsburgh, PA: MRS, 1996).

    Google Scholar 

  20. D. Krevelen, Properties of Polymers, 3rd ed. (New York: Elsevier, 1990).

    Google Scholar 

  21. C. Jin et al., Proc. 2nd Int. Dielectric for VLSI/ULSI Multilayer Interconnect Conf. (Tampa, FL: 1996), p. 21.

  22. A. Griffin, F. Brotzen, and P. Loos, J. Appl. Phys., 76 (1994), p. 4007.

    Article  CAS  Google Scholar 

  23. A. Hurd, MRS Bulletin, 21 (1996), p. 11.

    Google Scholar 

  24. S. Jeng et al., VLSI-Technology Digest of Tech Papers, Mat. Res. Soc. Symp. (Warrendale, PA: MRS, 1996), p. 15.

    Google Scholar 

  25. C. Graas and L. Ting, Mat. Res. Soc. Symp. Proc., 338 (Pittsburgh, PA: MRS, 1994), p. 429.

    Google Scholar 

  26. S.-P. Jeng et al., Mat. Res. Soc. Symp. Proc., 381 (Pittsburgh, PA: MRS, 1995), p. 197.

    Google Scholar 

  27. P.-H. Wang et al., J. Appl. Phys., 84 (1998), p. 6007.

    Article  CAS  Google Scholar 

  28. P.-H. Wang and P.S. Ho, in Ref. 10, p. 353.

    Google Scholar 

  29. J.-H. Zhao et al., J. Applied Physics, 85 (1999), p. 6421.

    Article  CAS  Google Scholar 

  30. K.E. Goodson et al., IEEE Electronic Device Letters, 14 (1994), p. 490.

    Article  Google Scholar 

  31. O.W. Kading, H. Skurk, and K.E. Goodson, Applied Physics Letters, 65 (1994), p. 1629.

    Article  Google Scholar 

  32. C. Hu et al., in Ref 10.

    Google Scholar 

  33. C.T. Rosenmayer, J.W. Bartz, and J. Hammes, Mat. Res. Soc. Symp. Proc., 476, ed. C. Case et al. (Warrendale, PA: MRS, 1997).

    Google Scholar 

  34. N.H. Hendricks et al., Mat. Res. Soc. Symp. Proc., 381, ed. T.-M. Lu et al. (Pittsburgh, PA: MRS, 1997).

    Google Scholar 

  35. R.A. Kirchhoff et al., J. Macromolecular Science-Chemistry, A28 (1991), p. 1079.

    Google Scholar 

  36. D. Burdeaux et al., J. Electronic Materials, 19 (1990), p. 1357.

    CAS  Google Scholar 

  37. P.H. Townsend et al., Mat. Res. Soc. Symp. Proc., 476, ed. C. Case et al. (Warrendale, PA: MRS, 1997), p. 9.

    Google Scholar 

  38. N. Hacker, MRS Bulletin, 22 (1997), p. 33.

    CAS  Google Scholar 

  39. J.N. Bremmer et al., Mat. Res. Soc. Symp. Proc., 476, ed. C. Case et al. (Warrendale, PA: MRS, 1997), p. 37.

    Google Scholar 

  40. Y. Liu et al., VLSI Multilevel Interconnection Conference (Santa Clara, CA: 1997), p. 333.

  41. W.-L. Wu and H.-C. Liou, Thin Solid Films, 312 (1998), p. 73.

    Article  CAS  Google Scholar 

  42. S.M. Kim et al., in Ref. 10, p. 39.

    Google Scholar 

  43. C. Jin, S. List, and E. Zielinski, Mat. Res. Soc. Symp. Proc., 511, ed. C. Chiang et al. (Warrendale, PA: MRS, 1998).

    Google Scholar 

  44. L.C. Klein, Materials Science and Process Technology, XXI (Park Ridge, NJ: Noyes Publications, 1988).

    Google Scholar 

  45. C. Jin et al., MRS Bulletin, 22 (1997), p. 39.

    CAS  Google Scholar 

  46. C.J. Brinker, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Boston: Academic Press, 1990).

    Google Scholar 

  47. J. Fricke, Scientific American, 258 (1988), p. 92.

    Article  CAS  Google Scholar 

  48. S.S. Prakash et al., Nature, 374 (1995), p. 439.

    Article  CAS  Google Scholar 

  49. Y. Lu et al., Nature, 389 (1997), p. 364.

    Article  CAS  Google Scholar 

  50. C.V. Nguyen et al., Polymer Preprints, 40 (1999), p. 398.

    CAS  Google Scholar 

  51. J. Gross, G. Reichenauer, and J. Fricke, J. Physics D: Applied Physics, 21 (1988), p. 1447.

    Article  CAS  Google Scholar 

  52. J. Gross and J. Fricke, J. Non-Crystalline Solids, 145 (1992), p. 217.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For more information, contact P. Ho, University of Texas, Institute for Materials Science, Austin, Texas 78712; (512) 471-8961; fax (512) 471-8969; e-mail paulho@mail.utexas.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgen, M., Zhao, JH., Hu, C. et al. Low dielectric constant materials for advanced interconnects. JOM 51, 37–40 (1999). https://doi.org/10.1007/s11837-999-0158-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-999-0158-8

Keywords

Navigation