Skip to main content
Log in

Study on the Effect of Preheating Temperature on Residual Stress in Laser Arc Composite Welding of Dissimilar Aluminum Alloys

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study, based on the Simufact Welding analysis software, established a three-dimensional finite element computational model according to actual welding conditions. Using a combined volumetric heat source, we analyzed the magnitude and distribution of residual stress after laser arc composite welding of dissimilar aluminum alloys, and validated the results with experimental data. The influence of different preheating temperatures on the variation rule of residual stress in each part of the weldment was explored. The results showed that the calibration results of the combined volumetric heat source model were ideal, and that the simulation results of transverse and longitudinal residual stress were in good agreement with the actual results. The average residual stress in the heat-affected zone (HAZ) of the 5083-H112 aluminum alloy was about 190 MPa, which is close to the yield strength of the base metal at room temperature (193 MPa); the average residual stress at the weld seam was about 230 MPa; and the average residual stress in the HAZ of the 6063-T6 aluminum alloy was about 80 MPa. In addition, preheating before welding has a positive effect on reducing residual stress after welding. The optimal preheating temperature for the 5083-H112 aluminum alloy is about 170°C, and for 6063-T6 aluminum alloy it is about 220°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z.G. He, D.W. Zhou, A. Liu, S.W. Zhou, X.Y. Du, X.Y. Wang, and J.S. Liu, Opt. Laser Technol. 164, 109470 https://doi.org/10.1016/j.optlastec.2023.109470 (2023).

    Article  Google Scholar 

  2. L. Wan, and Y.X. Huang, Int. J. Adv. Manuf. Technol. 99, 1781 https://doi.org/10.1007/s00170-018-2601-x (2018).

    Article  Google Scholar 

  3. S.B. Yang, L. Yang, D.X. Wang, F.L. Zhang, C.J. Liu, and G.Z. Huang, Optik 271, 170165 https://doi.org/10.1016/j.ijleo.2022.170165 (2022).

    Article  Google Scholar 

  4. S.B. Yang, D.X. Wang, L. Yang, F.L. Zhang, C. Zhang, B. Zhou, C.J. Liu, and G.Z. Huang, Optik 268, 169795 https://doi.org/10.1016/j.ijleo.2022.169795 (2022).

    Article  Google Scholar 

  5. F. Hayat, Eng. Sci. Technol. 34, 101093 https://doi.org/10.1016/j.jestch.2022.101093 (2022).

    Article  Google Scholar 

  6. S.B.A. Zhong, S. Han, J.Q. Chen, J.K. Ren, Z.X. Zhou, F. Wen, L. Qi, and R.G. Guan, Mater. Today Commun. 31, 103260 https://doi.org/10.1016/j.mtcomm.2022.103260 (2022).

    Article  Google Scholar 

  7. J.M. Sun, and K. Dilger, J. Manuf. Process. 101, 259 https://doi.org/10.1016/j.jmapro.2023.06.011 (2023).

    Article  Google Scholar 

  8. H. Xia, J.B. Wu, Z.Y. Xu, Z.T. Liu, X.F. Pan, B. Wang, J. Wang, and Z. Wang, Nondestruct. Test. Eval. 38, 701 https://doi.org/10.1080/10589759.2022.2159028 (2023).

    Article  Google Scholar 

  9. W.T. Song, C.G. Xu, Q.X. Pan, and J.F. Song, Chin. J. Mech. Eng. 29, 365 https://doi.org/10.3901/cjme.2015.1023.126 (2016).

    Article  Google Scholar 

  10. A. Chiocca, F. Frendo, F. Aiello, and L. Bertini, Int. J. Fatigue 162, 106901 https://doi.org/10.1016/j.ijfatigue.2022.106901 (2022).

    Article  Google Scholar 

  11. G.L. Fan, C.F. Xue, O.O. Ojo, D. Bokov, S. Mehrez, M. Paidar, and J. Xu, Vacuum 196, 110712 https://doi.org/10.1016/j.vacuum.2021.110712 (2022).

    Article  Google Scholar 

  12. D.Q. Sun, Y.Y. Zhang, Y.J. Liu, X.Y. Gu, and H.M. Li, Mater. Des. 109, 596 https://doi.org/10.1016/j.matdes.2016.07.076 (2016).

    Article  Google Scholar 

  13. S.W. Cui, Y.H. Yu, R. Ma, F.Y. Tian, and S.W. Pang, Materials 16, 4886 https://doi.org/10.3390/ma16134886 (2023).

    Article  Google Scholar 

  14. Y.Y. Guo, H.H. Pan, L.B. Ren, and G.F. Quan, Int. J. Adv. Manuf. Technol. 98, 1433 https://doi.org/10.1007/s00170-018-2206-4 (2018).

    Article  Google Scholar 

  15. P. Wei, M.F. Wu, D.S. Liu, Z.Q. Zhao, Y. Liang, and Z.H. Dong, Materials 15, 3737 https://doi.org/10.3390/ma15103737 (2022).

    Article  Google Scholar 

  16. U. Prisco, Weld. World 65, 2105 https://doi.org/10.1007/s40194-021-01167-3 (2021).

    Article  Google Scholar 

  17. N. Yadaiah, and S. Bag, Int. J. Therm. Sci. 86, 125 https://doi.org/10.1016/j.ijthermalsci.2014.06.032 (2014).

    Article  Google Scholar 

  18. M. Jafarzadegan, R. Taghiabadi, and M.A. Mofid, Mater. Today Commun. 31, 103411 https://doi.org/10.1016/j.mtcomm.2022.103411 (2022).

    Article  Google Scholar 

  19. J. Goldak, A.P. Chakravarti, and M. Bibby, Mater. Metall. Mater. Trans. B 15, 299 https://doi.org/10.1007/BF02667333 (1984).

    Article  Google Scholar 

  20. B.L. Dong, X.Y. Cai, S.B. Lin, Z.D. Ni, and C.L. Fan, Int. J. Adv. Manuf. Technol. 114, 2229 https://doi.org/10.1007/s00170-021-06928-4 (2021).

    Article  Google Scholar 

  21. H.B. Cui, Y. Lu, C.X. Wang, X. Tang, Z.G. Liu, and R.D.K. Misra, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 836, 142697 https://doi.org/10.1016/j.msea.2022.142697 (2022).

    Article  Google Scholar 

  22. W.H. Wang, W.H. Lin, R. Yang, Y.N. Wu, J.P. Li, Z.B. Zhang, and Z.R. Zhai, Mater. Des. 213, 110355 https://doi.org/10.1016/j.matdes.2021.110355 (2022).

    Article  Google Scholar 

  23. X.Y. Gui, X.D. Gao, Y.X. Zhang, and J.K. Wu, Mod. Phys. Lett. B 36, 2150467 https://doi.org/10.1142/S0217984921504674 (2022).

    Article  Google Scholar 

  24. B. Cui, S.Y. Liu, F.L. Zhang, T.W. Luo, and M. Feng, Int. J. Adv. Manuf. Tech. 119, 421 https://doi.org/10.1007/s00170-021-08113-z (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The author (Dr. Chen) thanks the National Natural Science Foundation of China (No 51774249) and the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University) for the Open Fund (PLN2021-22) and the Sichuan Provincial Engineering Research Center for Advanced Materials Preparation Technology for Shale Gas Efficient Exploitation Fund (No 2022SCYYQKCCL012) to conduct this research investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowen Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Tang, S., Xie, W. et al. Study on the Effect of Preheating Temperature on Residual Stress in Laser Arc Composite Welding of Dissimilar Aluminum Alloys. JOM (2024). https://doi.org/10.1007/s11837-024-06600-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06600-8

Navigation