Skip to main content
Log in

Comparative Analysis of Wettability Characteristics in Developed SMAW Electrode Coating Fluxes: A Regression Model and ANN Approach

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The objective of this study is to develop and examine coating fluxes for SMAW electrodes intended for use in nuclear power plant steel welding. A set of 21 unique flux compositions is created using the extreme vertices design methodology. These compositions predominantly consist of SrO-CaO-Al2O3-CaF2 fluxes. At a temperature of 1373 K, an in-depth investigation is carried out to assess key properties, including the work of adhesion, spread area, contact angle and floatation coefficient. Additionally, the surface tension of these flux compositions is estimated. XRD and FTIR analysis methodologies have been employed for the purpose of examining and identifying the phases that exist within both the flux and slag. Furthermore, structural analysis of the molten material is conducted through the examination of quenched slag powder. Results reveal that the individual components CaO, CaF2 and binary interaction of Al2O3 × SrO have a significant effect on the contact angle and floatation coefficient. Individual interactions of CaO, SrO, Al2O3 and CaF2 exert a positive impact on the spread area. The individual components Al2O3 and SrO were found to have a significant effect on the work of adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Özbek, Cumhur. Üniversitesi İktisadi ve İdari Bilim. Derg. 24, 114 (2023).

    Article  Google Scholar 

  2. S. Saito, J. Nucl. Mater. 398, 1 (2010).

    Article  Google Scholar 

  3. J. Baek, Appl. Energy 145, 133 (2015).

    Article  Google Scholar 

  4. K. Gupta, J.T. Ripberger, A.S. Fox, H.C. Jenkins-Smith, and C.L. Silva, Energy Policy 156, 112388 (2021).

    Article  Google Scholar 

  5. E. Chajduk and A. Bojanowska-Czajka, Prog. Nucl. Energy 88, 1 (2016).

    Article  Google Scholar 

  6. K. Ravikiran, G. Das, S. Kumar, P.K. Singh, K. Sivaprasad, and M. Ghosh, Mater. Res. Express 6, 096518 (2019).

    Article  Google Scholar 

  7. A.K. Maurya, C. Pandey, and R. Chhibber, Int. J. Press. Vessel. Pip. 192, 104439 (2021).

    Article  Google Scholar 

  8. D.W. Rathod, S. Pandey, S. Aravindan, and P.K. Singh, Metallogr. Microstruct. Anal. 5, 450 (2016).

    Article  Google Scholar 

  9. D.W. Rathod, S. Pandey, P.K. Singh, and S. Kumar, J. Nucl. Mater. 493, 412 (2017).

    Article  Google Scholar 

  10. D. W. Rathod, Weldability Investigations of Dissimilar Metal Joints for Nuclear Plant Applications (2015).

  11. H. Ming, Z. Zhang, J. Wang, E.-H. Han, P. Wang, and Z. Sun, Mater. Charact. 123, 233 (2017).

    Article  Google Scholar 

  12. A. Gupta, J. Singh, and R. Chhibber, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 095440892311597 (2023).

  13. H. Alipooramirabad, A. Paradowska, R. Ghomashchi, and M. Reid, J. Manuf. Process. 28, 70 (2017).

    Article  Google Scholar 

  14. R. Pouriamanesh, K. Dehghani, R. Vallant, and N. Enzinger, J. Mater. Eng. Perform. 27, 6058 (2018).

    Article  Google Scholar 

  15. S.S. Babu, Curr. Opin. Solid State Mater. Sci. 8, 267 (2004).

    Article  Google Scholar 

  16. U. Mitra and T.W. Eagar, Metall. Trans. B 22, 65 (1991).

    Article  Google Scholar 

  17. A. Gupta, J. Singh, and R. Chhibber, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 095440892311720 (2023).

  18. M. Matsushita and S. Liu, Weld. J. (Miami, Fla) 79, 295 (2000).

  19. J. Du Plessis, Control of Diffusible Weld Metal Hydrogen Through Arc Chemistry Modifications. University of Pretoria (South Africa, 2006).

  20. H. Wang, R. Qin, and G. He, Metall. Mater. Trans. A 47, 4530 (2016).

    Article  Google Scholar 

  21. A. Gupta, J. Singh, and R. Chhibber, SILICON 15, 3463 (2023).

    Article  Google Scholar 

  22. C.-M. Chang, S.-H. Wu, C. Fan, M.-C. Chen, and W. Wu, Mater. Chem. Phys. 112, 783 (2008).

    Article  Google Scholar 

  23. K.C. Mills and B.J. Keene, Int. Met. Rev. 26, 21 (1981).

    Article  Google Scholar 

  24. J.B. Kim, J.K. Choi, I.W. Han, and I. Sohn, J. Non Cryst. Solids 432, 218 (2016).

    Article  Google Scholar 

  25. R. Zhang, Y. Meng, Z. Wang, S. Jiao, J. Jia, Y. Min, and C. Liu, Metall. Mater. Trans. B 53, 571 (2022).

    Article  Google Scholar 

  26. L. Sharma, J. Kumar, and R. Chhibber, Ceram. Int. 46, 8111 (2020).

    Article  Google Scholar 

  27. L. Sharma, J. Kumar, and R. Chhibber, Ceram. Int. 46, 5649 (2020).

    Article  Google Scholar 

  28. W. Wang, E. Gao, L. Zhou, L. Zhang, and H. Li, J. Iron. Steel Res. Int. 26, 355 (2019).

    Article  Google Scholar 

  29. R. Joshi and R. Chhibber, Renew. Energy 119, 282 (2018).

    Article  Google Scholar 

  30. H. Tian, Z. Wang, T. Zhao, and C. Wang, Metall. Mater. Trans. B 53, 232 (2022).

    Article  Google Scholar 

  31. H. Wang and G. He, Weld. J. 95, 467s (2016).

    Google Scholar 

  32. V. Kumar, J. Kumar, R. Chhibber, and L. Sharma, SILICON 15(4), 1933 (2022).

    Google Scholar 

  33. J.S. Choi, T.J. Park, and D.J. Min, Metall. Mater. Trans. B 52, 1333 (2021).

    Article  Google Scholar 

  34. K. Sham and S. Liu, Weld. J. 93, 271s (2014).

  35. Z. Wang, J. Zhang, M. Zhong, and C. Wang, Metall. Mater. Trans. B 53, 1364 (2022).

    Article  Google Scholar 

  36. A. Kumar, L. Sharma, and R. Chhibber, Ceram. Int. 49, 10224 (2023).

    Article  Google Scholar 

  37. V. Kumar, J. Kumar, R. Chhibber, and L. Sharma, Silicon 15, 1933 (2022).

    Google Scholar 

  38. S. Mishra, L. Sharma, and R. Chhibber, Silicon 15, 5525 (2023).

    Article  Google Scholar 

  39. W.N. Khan, J. Kumar, and R. Chhibber, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 234, 622 (2020).

    Article  Google Scholar 

  40. A. Kumar and R. Chhibber, Metall. Mater. Trans. B 54, 287 (2023).

    Article  Google Scholar 

  41. R.A. McLean, and V.L. Anderson, Technometrics 8, 447 (1966).

    Article  MathSciNet  Google Scholar 

  42. K. Nakashima, and K. Mori, ISIJ Int. 32, 11 (1992).

    Article  Google Scholar 

  43. R.E. Boni, and G. Derge, JOM 8, 53 (1956).

    Article  Google Scholar 

  44. K. Mills, L. Yuan, Z. Li, G. Zhang, and K. Chou, High Temp. Mater. Process. 31, 301 (2012).

    Article  Google Scholar 

  45. W.N. Khan and R. Chhibber, Ceram. Int. 46, 8601 (2020).

    Article  Google Scholar 

  46. M. Garai, N. Sasmal, A.R. Molla, S.P. Singh, A. Tarafder, and B. Karmakar, J. Mater. Sci. 49, 1612 (2014).

    Article  Google Scholar 

  47. T. Sowmya and S. R. Sankaranarayanan, in VII International Conference on Molten Slags Fluxes Salts, vol. 693 (2004).

  48. G. Kaur, M. Kumar, A. Arora, O.P. Pandey, and K. Singh, J. Non Cryst. Solids 357, 858 (2011).

    Article  Google Scholar 

  49. Y. Chen, A. Furmann, M. Mastalerz, and A. Schimmelmann, Fuel 116, 538 (2014).

    Article  Google Scholar 

  50. Z.G. Wang, X.T. Zu, and X. Xiang, J. Mater. Sci. 41, 1973 (2006).

    Google Scholar 

  51. Y. Zhang, T. Coetsee, H. Yang, T. Zhao, and C. Wang, Metall. Mater. Trans. B 51, 1947 (2020).

    Article  Google Scholar 

  52. J.S. Choi, T.J. Park, D.J. Min, and I. Sohn, J. Mater. Res. Technol. 15, 1382 (2021).

    Article  Google Scholar 

  53. J.H. Park, D.J. Min, and H.S. Song, ISIJ Int. 42, 38 (2002).

    Article  Google Scholar 

  54. M. Hayashi, N. Nabeshima, H. Fukuyama, and K. Nagata, ISIJ Int. 42, 352 (2002).

    Article  Google Scholar 

  55. V. Kumar, J. Kumar, R. Chhibber, and L. Sharma, SILICON 14, 11279 (2022).

    Article  Google Scholar 

  56. Y. Li, B. Yu, B. Wang, T.H. Lee, and M. Banu, Mater. Des. 194, 108912 (2020).

    Article  Google Scholar 

  57. Z. Tian, J. Intell. Manuf. 23, 227 (2012).

    Article  Google Scholar 

  58. K.-Y. Kim and F. Ahmed, Adv. Eng. Informatics 38, 41 (2018).

    Article  Google Scholar 

  59. J. Freiesleben, J. Keim, and M. Grutsch, Qual. Reliab. Eng. Int. 36, 1837 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Singh, J. & Chhibber, R. Comparative Analysis of Wettability Characteristics in Developed SMAW Electrode Coating Fluxes: A Regression Model and ANN Approach. JOM (2024). https://doi.org/10.1007/s11837-024-06595-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06595-2

Navigation