Skip to main content
Log in

Thermal, Mechanical Properties and Finite Element Analysis of Polypropylene Hybrid Composites from Nonmetallic Fractions of Waste Printed Circuit Boards (WPCBs) and Shellfish Waste

  • Interface Engineering and Property Functionalization
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Shellfish waste with non-metallic fractions from waste printed circuit boards (D-NMFs and W-NMFs) were used to reinforce polypropylene (PP). Thermal stability and mechanical properties were investigated, supplemented by finite element analysis, to investigate the reinforcement mechanism. Thermal property studies revealed a significant strengthening of the PP matrix upon NMFs incorporation. Final decomposition temperature increased from 391ºC for pure PP to 415ºC and 420ºC with 15 wt.% NMFs, and further reached ~ 435ºC and ~ 430ºC with clam and crab shell. Regarding mechanical properties, NMFs inclusion, especially W-NMFs, significantly elevated the composites’ stiffness. Tensile modulus, along with flexural strength and flexural modulus increased from 917.31 MPa, 33.02 MPa, and 509.24 MPa for pure PP to 1368.82 MPa, 54.95 MPa, and 1678.12 MPa, respectively, for composites with 15 wt.% W-NMFs. NMFs/PP composites filled with shells, especially clam shells, could further improve the filling effect. The tensile modulus, along with flexural strength, increased from 1379.04 MPa, 52.97 MPa, and 1103.49 MPa to 1579.05 MPa, 54.72 MPa, and 1918.96 MPa, respectively, for composites containing 10 wt.% W-NMFs and 15 wt.% clam shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.K. Eriksen, J.D. Christiansen, A.E. Daugaard, and T.F. Astrup, Waste Manag. 96, 75 (2019).

    Article  Google Scholar 

  2. S. Yu, W. Su, D. Wu, Z. Yao, J. Liu, J. Tang, and W. Wu, Sci. Total Environ. 675, 651 (2019).

    Article  Google Scholar 

  3. P. Singh, P. Katiyar, and H. Singh, Mater. Today Proc. 78, 189 (2023).

    Article  Google Scholar 

  4. K. Shirvanimoghaddam, K.V. Balaji, R. Yadav, O. Zabihi, M. Ahmadi, P. Adetunji, and M. Naebe, Compos. B Eng. 223, 109121 (2021).

    Article  Google Scholar 

  5. W. Liu, Y. Zhu, C. Qian, H. Dai, Y. Fu, and Y. Dong, Compos. B Eng. 241, 110029 (2022).

    Article  Google Scholar 

  6. K. Liu, Q. Tan, J. Yu, and M. Wang, Circ. Econ. 2, 100028 (2023).

    Google Scholar 

  7. F. Faraji, R. Golmohammadzadeh, and C.A. Pickles, J. Environ. Manag. 316, 115242 (2022).

    Article  Google Scholar 

  8. Z. Yao, M. Reinmöller, N. Ortuño, H. Zhou, M. Jin, J. Liu, and R. Luque, Prog. Energy Combust. Sci. 97, 101086 (2023).

    Article  Google Scholar 

  9. Z. Yao, J. Xiong, S. Yu, W. Su, W. Wu, J. Tang, and D. Wu, Waste Manag. Res. 38, 903 (2020).

    Article  Google Scholar 

  10. Q. Wang, B. Zhang, S. Yu, J. Xiong, Z. Yao, B. Hu, and J. Yan, ACS Omega 5, 17850 (2020).

    Article  Google Scholar 

  11. J. Li, S. Zhang, and Y. Jiang, Circ. Econ. 1, 100008 (2022).

    Google Scholar 

  12. T. Kovačević, J. Rusmirović, N. Tomić, M. Marinović-Cincović, Ž Kamberović, M. Tomić, and A. Marinković, Compos. Part B Eng. 127, 1 (2017).

    Article  Google Scholar 

  13. T. Kovačević, J. Rusmirović, N. Tomić, G. Mladenović, M. Milošević, N. Mitrović, and A. Marinković, Polym. Compos. 40, 1170 (2019).

    Article  Google Scholar 

  14. D. Hu, Y. Luo, J. Lin, Y. Chen, and D. Jia, Polym. Compos. 41, 2224 (2020).

    Article  Google Scholar 

  15. A.K. Moe, J. Chungprempree, J. Preechawong, P. Sapsrithong, and M. Nithitanakul, Polymers-Basel 15, 2938 (2023).

    Article  Google Scholar 

  16. M. Hemath, S. Mavinkere Rangappa, V. Kushvaha, H.N. Dhakal, and S. Siengchin, Polym. Compos. 41, 3940 (2020).

    Article  Google Scholar 

  17. Z. Yao, M. Xia, H. Li, T. Chen, Y. Ye, and H. Zheng, Crit. Rev. Environ. Sci. Technol. 44, 2502 (2014).

    Article  Google Scholar 

  18. Z.T. Yao, T. Chen, H.Y. Li, M.S. Xia, Y. Ye, and H. Zheng, J. Hazard. Mater. 262, 212 (2013).

    Article  Google Scholar 

  19. G.S. Balan, V.S. Kumar, S. Rajaram, and M. Ravichandran, J. Tribol. 27, 57 (2020).

    Google Scholar 

  20. A. Hosseini, and A. Raji, Mater. Res. Express 10, 65301 (2023).

    Article  Google Scholar 

  21. X. Wei, C. Nie, Y. Yu, J. Wang, X. Lyu, P. Wu, and X. Zhu, Process Saf. Environ. 146, 694 (2021).

    Article  Google Scholar 

  22. R. Nithya, C. Sivasankari, and A. Thirunavukkarasu, Environ. Chem. Lett. 19, 1347 (2021).

    Article  Google Scholar 

  23. X. Wang, F. Jiao, W. Qin, Z. Li, N. Wang, W. Liu, and C. Yang, JOM-US 72, 3179 (2020).

    Article  Google Scholar 

  24. N. Zhu, Y. Xiang, T. Zhang, P. Wu, Z. Dang, P. Li, and J. Wu, J. Hazard. Mater. 192, 614 (2011).

    Article  Google Scholar 

  25. W. Su, S. Yu, D. Wu, M. Xia, Z. Wen, Z. Yao, J. Tang, and W. Wu, Environ. Sci. Pollut. Res. 26, 31581 (2019).

    Article  Google Scholar 

  26. R.K. Singh, B. Ruj, A.K. Sadhukhan, and P. Gupta, J. Environ. Manag. 239, 395 (2019).

    Article  Google Scholar 

  27. D. Hu, Z. Jia, J. Li, B. Zhong, W. Fu, Y. Luo, and D. Jia, J. Polym. Environ. 26, 1311 (2018).

    Article  Google Scholar 

  28. R.M. Grigorescu, P. Ghioca, L. Iancu, M.E. David, E.R. Andrei, M.I. Filipescu, R. Ion, Z. Vuluga, I. Anghel, and I. Sofran, Waste Manag. 118, 391 (2020).

    Article  Google Scholar 

  29. Y. Li, Y. Feng, Z. Xu, L. Yan, X. Xie, and Z. Wang, J. Mater. Res. 9, 14718 (2020).

    Google Scholar 

  30. Z. Yao, M. Xia, L. Ge, T. Chen, H. Li, Y. Ye, and H. Zheng, Fiber Polym. 15, 1278 (2014).

    Article  Google Scholar 

  31. D.L. Singaravelu, R. Vijay, S. Manoharan, and M. Kchaou, Int. J. Autom. Mech. Eng. 16, 6502 (2019).

    Article  Google Scholar 

  32. A. Manta, M. Gresil, and C. Soutis, J. Phys. Mater. 3, 14006 (2020).

    Article  Google Scholar 

  33. R.K. Das, O.K. Gohatre, M. Biswal, S. Mohanty, and S.K. Nayak, Waste Manag. Res. 37, 569 (2019).

    Article  Google Scholar 

  34. S. Arulvel, A. Elayaperumal, and M.S. Jagatheeshwaran, J. Environ. Chem. Eng. 4, 3891 (2016).

    Article  Google Scholar 

  35. S.K. Muniyandi, J. Sohaili, A. Hassan, and S.S. Mohamad, J. Environ. Health Sci. 11, 1 (2013).

    Google Scholar 

  36. P. Zhang, F. Weng, E. Koranteng, D. Guo, P. Cao, and Q. Wu, J. Appl. Polym. Sci. 138, 49963 (2021).

    Article  Google Scholar 

  37. H. Jena, A. Panigrahi, and M. Jena, Adv. Mater. Process. Technol. 9, 75 (2023).

    Google Scholar 

  38. M. Xia, Z. Yao, L. Ge, T. Chen, and H. Li, J. Compos. Mater. 49, 807 (2015).

    Article  Google Scholar 

  39. H. Hestiawan, Y. Afrizal, J. Haidi, and C. Juyetzu, J. Polimesin 21, 219 (2023).

    Google Scholar 

  40. S. Palaniyappan, and N. Kumar Sivakumar, Mater. Lett. 341, 134257 (2023).

    Article  Google Scholar 

  41. M.M. Mazidi, M.K.R. Aghjeh, H.A. Khonakdar, and U. Reuter, RSC Adv. 6, 1508 (2016).

    Article  Google Scholar 

  42. W. Ondiek, M. Kondo, M. Adachi, A. Macadre, and K. Goda, J. Compos. Sci. 7, 296 (2023).

    Article  Google Scholar 

  43. C.A. Covarrubias Gordillo, F. Soriano Corral, C.A. Ávila Orta, H.A. Fonseca Florido, P. González Morones, V.J. Cruz Delgado, and C.J. Cabello Alvarado, J. Appl. Polym. Sci. 137, 49138 (2020).

    Article  Google Scholar 

  44. S. Vyas, E. Goli, X. Zhang, and P.H. Geubelle, Compos. Sci. Technol. 184, 107832 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This study was conducted under the financial support from the Science and Technology Project of Zhoushan (2020C21014), Zhejiang Provincial Natural Science Foundation of China (Grant No. LTY21B070002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhitong Yao or Zhengshun Wen.

Ethics declarations

Conflict of interest

The authors declare having no competing interests that might be perceived to affect the interpretation of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Yu, S., Tong, J. et al. Thermal, Mechanical Properties and Finite Element Analysis of Polypropylene Hybrid Composites from Nonmetallic Fractions of Waste Printed Circuit Boards (WPCBs) and Shellfish Waste. JOM (2024). https://doi.org/10.1007/s11837-024-06574-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06574-7

Navigation