Skip to main content
Log in

Phase Transformation Law of Manganese and Iron Oxides in Ferromanganese Ore During Gas-Based Simultaneous Reduction Roasting

  • Characterization Techniques and Methods for Low-Carbon Metallurgical Processes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Manganese is widely used in the iron and steel industry, batteries and other fields. The amount of the manganese oxide ores existing in China coeval with iron and their manganese-to-iron ratio is low. A study was conducted on a synchronous reduction roasting-magnetic separation of a ferromanganese ore with high content of iron taken from South Africa using CO as reductant. Under the conditions of 750°C roasting temperature, 40 min roasting time, 30% CO concentration roasting atmosphere and − 0.074 mm accounting for 82.56% grinding fineness, the iron removal rate was close to 70% through magnetic separation, with the grade and manganese recovery of manganese concentrate reaching 49% and 72.50% and the manganese-to-iron ratio increasing from 2.5 to 5.92. The X-ray diffraction analysis indicated that Mn2O3 and Fe2O3 in the raw ore was reduced to MnO and Fe3O4, respectively, without forming the intermediate product Mn3O4 in a weak reducing atmosphere. The SEM-EDS analysis of the roasted product showed that the simultaneous reduction of manganese and iron oxides could be achieved when the roasting temperature reaches 750°C. The crystal forms of MnO and Fe3O4 were more perfect, and the coexisting grains of Ca, Si and Al clustered further with increasing roasting temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T. Coetsee, Miner. Process Technol. Rev. 39, 351 (2018).

    Google Scholar 

  2. X. Wang, G.J. Xie, N. Tian, C.C. Dang, C. Cai, J. Ding, B.F. Liu, D.F. Xing, N.Q. Ren, and Q.L. Qi, Sci. Total. Environ. 822, 153513 (2022).

    Article  Google Scholar 

  3. M. Wang, X. Zheng, X. Zhang, D.L. Chao, S.Z. Qiao, H.N. Alshareef, Y. Cui, and W. Chen, Adv. Energy Mater. 11, 2002904 (2021).

    Article  Google Scholar 

  4. R.R. Zhang, X.T. Ma, X.X. Shen, Y.J. Zhai, T.Z. Zhang, C.X. Ji, and J.L. Hong, J. Clean. Prod. 253, 119951 (2020).

    Article  Google Scholar 

  5. J. Xing, L. Hou, H. Du, B.S. Liu, and Y.H. Wei, JOM 71, 4715 (2019).

    Article  Google Scholar 

  6. Y. Du, X.H. Gao, Z.W. Du, Y. Dong, B. Zhang, R.D.K. Misra, H.Y. Wu, and L.X. Du, JOM 73, 3301 (2021).

    Article  Google Scholar 

  7. F. He, J. Chen, G. Chen, J.H. Peng, C. Srinivasakannan, and R. Ruan, JOM 71, 3909 (2019).

    Article  Google Scholar 

  8. D. He, J. Shu, R. Wang, M.J. Chen, R. Wang, Y.S. Gao, R.L. Liu, Z.H. Liu, Z.H. Xu, D.Y. Tan, H.N. Gui, and N. Wang, J. Hazard. Mater. 418, 126235 (2021).

    Article  Google Scholar 

  9. J. Ju, Y. Feng, H. Li, and X.F. Zhong, JOM 74, 1978 (2022).

    Article  Google Scholar 

  10. B. Liu, Y. Zhang, M. Lu, Z.J. Su, G.G. Li, and T. Jing, Miner. Eng. 131, 286 (2019).

    Article  Google Scholar 

  11. J. Hu, L. Chen, J.L. Zhang, Y. Zhou, J. Zhang, L.W. Cao, W.J. Zhao, H.L. Tao, J.K. Yang, and F.F. Wu, JOM 75, 3511 (2023).

    Article  Google Scholar 

  12. F. Teng, S. Luo, W. Mu, X.F. Lei, H.X. Xin, Y.C. Zhai, and Y.N. Nian, JOM 70, 2008 (2018).

    Article  Google Scholar 

  13. V. Singh, K.V. Reddy, S.K. Tripathy, P. Kumari, A.K. Dubey, R. Mohanty, R.R. Satpathy, and S. Mukherjee, J. Clean. Prod. 284, 124784 (2021).

    Article  Google Scholar 

  14. V. Singh, T. Chakraborty, and S.K. Tripathy, Miner. Process. Extr. Metall. Rev. 41, 417 (2020).

    Article  Google Scholar 

  15. A. Cheraghi, H. Yoozbashizadeh, and J. Safarian, Miner. Process. Extr. Metall. Rev. 41, 198 (2020).

    Article  Google Scholar 

  16. F. Teng, S.H. Luo, W.N. Mu, X.F. Lei, H.X. Xin, Y.C. Zhai, and Y.N. Dai, JOM 70, 2008 (2018).

    Article  Google Scholar 

  17. X. Cai, F. Shen, Y. Zhang, H.Y. Hu, Z.Q. Huang, Y.Z. Yin, X.T. Liang, Y.B. Qin, and J. Liang, J. Hazard. Mater. 366, 466 (2019).

    Article  Google Scholar 

  18. J. Du, L. Gao, Y. Yang, S.H. Guo, J. Chen, M. Omran, and G. Chen, Adv. Powder Technol. 31, 2901 (2020).

    Article  Google Scholar 

  19. Y. Zhang, Y. Zhao, Z. You, D.X. Duan, G.H. Li, T. Jiang, and J. Cent, South Univ. 22, 2515 (2015).

    Article  Google Scholar 

  20. Y. Gao, H.G. Kim, H.Y. Sohn, and C.W. Kim, ISIJ Int. 52, 759 (2012).

    Article  Google Scholar 

  21. L. Qin, W. Wu, X. Cheng, F. Xu, and X. Li, JOM 75, 2212 (2023).

    Article  Google Scholar 

  22. B. Liu, Y. Zhang, J. Wang, J. Wang, Z.J. Su, G.H. Li, and T. Jiang, Adv. Powder Technol. 30, 302 (2019).

    Article  Google Scholar 

  23. W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu, J. Iron. Steel Res. Int. 24, 34 (2017).

    Article  Google Scholar 

  24. H. Zhang, P. Zhang, F. Zhou, and M. Lu, Int. J. Min. Sci. Technol. 32, 865 (2022).

    Article  Google Scholar 

  25. K. Quast, Miner. Eng. 126, 89 (2018).

    Article  Google Scholar 

  26. V.P. Ponomar, O.B. Brik, Y.I. Cherevko, and V.V. Ovsienko, Chem. Eng. Res. Des. 148, 393 (2019).

    Article  Google Scholar 

  27. S.K. Roy, D. Nayak, and S.S. Rath, Powder Technol. 367, 796 (2020).

    Article  Google Scholar 

  28. P. Liu, X. Zhu, Y. Han, Y.J. Li, and P. Gao, Powder Technol. 414, 118107 (2023).

    Article  Google Scholar 

  29. S. Yuan, R. Wang, P. Gao, Y. Han, and Y. Li, Powder Technol. 396, 80 (2022).

    Article  Google Scholar 

  30. Z. Wang, Z. Yang, L. Liu, Y.P. Ye, and X.Y. Xie, Sep. Purif. Technol. 302, 122107 (2022).

    Article  Google Scholar 

  31. I. Castellanos-Rubio, I. Rodrigo, R. Munshi, O. Arriortua, J. Garitaonandia, A. Martinez-Amesti, F. Plazaola, I. Orue, A. Pralle, and M. Insausti, Nanoscale 11, 16635 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Grant Nos. 51974204 and 52204276) and Key R&D Plan Projects in Hubei Province (Grant No. 2022BCA062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man-man Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Mf., Zhang, Hq., Xu, X. et al. Phase Transformation Law of Manganese and Iron Oxides in Ferromanganese Ore During Gas-Based Simultaneous Reduction Roasting. JOM (2024). https://doi.org/10.1007/s11837-024-06566-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11837-024-06566-7

Navigation