Skip to main content
Log in

A Process for Extraction of Manganese from Manganese Oxide Ores by a Novel and Efficient Roasting-Acid Leaching Technique

  • Pyrometallurgical Techniques Driving Recycling and the Circular Economy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this article, a novel efficient and environmental reductive roasting-acid leaching technique was proposed by a combined pretreatment of the microwave heating and reduction of alkali lignin. Factors influencing the leaching of manganese from manganese oxide ores were investigated, such as heating modes (microwave heating and conventional heating), microwave roasting parameters and acid leaching parameters. The results indicated that the leaching ratio of manganese by microwave heating was significantly higher than that by conventional heating under the same conditions. The reduction of manganese oxide ores by microwave heating was completed at a roasting temperature of 150°C and a roasting time of 5 min with the addition of 50% alkali lignin with the reduction sequence of MnO2 → Mn2O3 → Mn3O4 → MnO. A 97.43% leaching ratio of manganese was obtained from the roasted ore, which was leached by a 1.5 mol/L concentration of sulfuric acid at a 50°C leaching temperature, 50 rpm stirring speed and a 10:1 liquid-to-solid ratio for 5 min. Compared to the conventional reductive roasting-acid methods, the proposed technique was performed at a considerably lower temperature and shorter time, with higher reducing agent utilization ratio to processing the different manganese oxide ores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Das, S. Prakash, P.S.R. Reddy, and V.N. Misra, Resour. Conserv. Recycl. 50, 40–57 https://doi.org/10.1016/j.resconrec.2006.05.008 (2007).

    Article  Google Scholar 

  2. P. Das, S. Upadhyay, S. Dubey, and K.K. Singh, J. Environ. Chem. Engin. 9, 105640 https://doi.org/10.1016/j.jece.2021.105640 (2021).

    Article  Google Scholar 

  3. R. Zhang, X. Ma, X. Shen, Y. Zhai, T. Zhang, C. Ji, and J. Hong, J. Clean. Prod. 253, 119951 https://doi.org/10.1016/j.jclepro.2019.119951 (2020).

    Article  Google Scholar 

  4. Od.S.H. Santos, Cd.F. Carvalho, GAd. Silva, and CGd. Santos, J. Environ. Manag. 147, 314–320 https://doi.org/10.1016/j.jenvman.2014.09.020 (2015).

    Article  Google Scholar 

  5. Q.-Q. Lin, G.-H. Gu, H. Wang, R.-F. Zhu, Y.-C. Liu, and J.-G. Fu, Int. J. Miner. Metall. Mater. 23, 491–500 https://doi.org/10.1007/s12613-016-1260-x (2016).

    Article  Google Scholar 

  6. J.D. Steenkamp, D. Chetty, A. Singh, S.A.C. Hockaday, and G.M. Denton, JOM 72, 3422–3435 https://doi.org/10.1007/s11837-020-04318-x (2020).

    Article  Google Scholar 

  7. R. Elliott, K. Coley, S. Mostaghel, and M. Barati, JOM 70, 680–690 https://doi.org/10.1007/s11837-018-2769-4 (2018).

    Article  Google Scholar 

  8. G. Chen, C. Jiang, and R. Liu, Sep. Purif. Technol. 277, 119472 https://doi.org/10.1016/j.seppur.2021.119472 (2021).

    Article  Google Scholar 

  9. N. Toro, F. Rodríguez, A. Rojas, P. Robles, and Y. Ghorbani, Miner. Eng. 163, 106748 https://doi.org/10.1016/j.mineng.2020.106748 (2021).

    Article  Google Scholar 

  10. V. Singh, T. Chakraborty, and S.K. Tripathy, Min. Proc. Ext. Met. Rev. 41(6), 417–438 https://doi.org/10.1080/08827508.2019.1634567 (2020).

    Article  Google Scholar 

  11. A. Ganbari Arbat, E. Asghari Fesaghandis, A. Taghizadeh Tabrizi, and H. Aghajani, Trans. Indian Inst. Metals 73, 2355–2360 https://doi.org/10.1007/s12666-020-02036-1 (2020).

    Article  Google Scholar 

  12. A. Shoghian-Alanaghi, A.J. Zamharir, H. Aghajani, and A.T. Tabrizi, Min. Metall. Explor. 39(4), 1753–1761 https://doi.org/10.1007/s42461-022-00642-9 (2022).

    Article  Google Scholar 

  13. M. Petranikova, A.H. Tkaczyk, A. Bartl, A. Amato, V. Lapkovskis, and C. Tunsu, Waste Manag. 113, 521–544 https://doi.org/10.1016/j.wasman.2020.04.007 (2020).

    Article  Google Scholar 

  14. A.P. Das, L.B. Sukla, N. Pradhan, and S. Nayak, Bioresour. Technol. 102, 7381–7387 https://doi.org/10.1016/j.biortech.2011.05.018 (2011).

    Article  Google Scholar 

  15. Q. Zhao, L. Sun, G. Wang, C. Luo, Y. Shun, and K. Yan, Hydrometallurgy 189, 105113 https://doi.org/10.1016/j.hydromet.2019.105113 (2019).

    Article  Google Scholar 

  16. O. Ostrovski, S.E. Olsen, M. Tangstad, and M. Yastreboff, Can. Metall. Q. 41, 309–318 (2002).

    Article  Google Scholar 

  17. G. Akdogan, and R.H. Eric, Metall. Mater. Trans. B 26, 13–24 https://doi.org/10.1007/BF02648973 (1995).

    Article  Google Scholar 

  18. R.K. Jana, B.D. Pandey, and Premchand, Hydrometallurgy 53, 45–56 https://doi.org/10.1016/S0304-386X(99)00031-6 (1999).

    Article  Google Scholar 

  19. V. Nunna, S. Hapugoda, M.I. Pownceby, and G.J. Sparrow, Miner. Eng. 166, 106826 https://doi.org/10.1016/j.mineng.2021.106826 (2021).

    Article  Google Scholar 

  20. W. Wei, Z. Shao, Y. Zhang, R. Qiao, and J. Gao, Appl. Therm. Eng. 157, 113751 https://doi.org/10.1016/j.applthermaleng.2019.113751 (2019).

    Article  Google Scholar 

  21. Y. Sun, P. Gao, Y. Han, and D. Ren, Ind. Eng. Chem. Res. 52, 2323–2329 https://doi.org/10.1021/ie303233k (2013).

    Article  Google Scholar 

  22. D.Q. Zhu, Y. Cui, K. Vining, S. Hapugoda, J. Douglas, J. Pan, and G.L. Zheng, Int. J. Miner. Process. 106–109, 1–7 https://doi.org/10.1016/j.minpro.2012.01.003 (2012).

    Article  Google Scholar 

  23. G. Li, T. Shi, M. Rao, T. Jiang, and Y. Zhang, Miner. Eng. 32, 19–26 https://doi.org/10.1016/j.mineng.2012.03.012 (2012).

    Article  Google Scholar 

  24. K.-O. Jang, V.R.M. Nunna, S. Hapugoda, A.V. Nguyen, and W.J. Bruckard, Miner. Eng. 60, 14–22 https://doi.org/10.1016/j.mineng.2014.01.021 (2014).

    Article  Google Scholar 

  25. A. Mehdilo, and M. Irannajad, J. Ind. Eng. Chem. 33, 59–72 https://doi.org/10.1016/j.jiec.2015.09.018 (2016).

    Article  Google Scholar 

  26. G. Li, M. Liu, M. Rao, T. Jiang, J. Zhuang, and Y. Zhang, J. Hazard. Mater. 280, 774–780 https://doi.org/10.1016/j.jhazmat.2014.09.005 (2014).

    Article  Google Scholar 

  27. S. Agrawal, V. Rayapudi, and N. Dhawan, Miner. Eng. 132, 202–210 https://doi.org/10.1016/j.mineng.2018.12.012 (2019).

    Article  Google Scholar 

  28. S. Agrawal, and N. Dhawan, Sustain. Mater. Technol. 27, e00246 https://doi.org/10.1016/j.susmat.2021.e00246 (2021).

    Article  Google Scholar 

  29. Q. Ye, H. Zhu, L. Zhang, J. Ma, L. Zhou, P. Liu, J. Chen, G. Chen, and J. Peng, J. Alloys Compd. 613, 102–106 https://doi.org/10.1016/j.jallcom.2014.06.016 (2014).

    Article  Google Scholar 

  30. Q. Ye, H. Zhu, L. Zhang, P. Liu, G. Chen, and J. Peng, RSC Adv. 4, 58164–58170 https://doi.org/10.1039/C4RA08010F).10.1039/C4RA08010F (2014).

    Article  Google Scholar 

  31. Y. Sun, G. Fu, L. Jiang, and X. Cai, Min. Metall. Explor. 35, 215–220 https://doi.org/10.19150/mmp.8598 (2018).

    Article  Google Scholar 

  32. S. Lin, R. Liu, and S. Guo, Renew. Energy 181, 714–724 https://doi.org/10.1016/j.renene.2021.09.055 (2022).

    Article  Google Scholar 

  33. J. Ju, Y. Feng, H. Li, H. Yu, H. Wu, and S. Liu, Sustain. Chem. Pharm. 19, 100346 https://doi.org/10.1016/j.scp.2020.100346 (2021).

    Article  Google Scholar 

  34. Y.-B. Zhang, Y. Zhao, Z.-X. You, D.-X. Duan, G.-H. Li, and T. Jiang, J Cent. South Univ. 22, 2515–2520 https://doi.org/10.1007/s11771-015-2780-7 (2015).

    Article  Google Scholar 

  35. S. Yuan, W. Zhou, Y. Han, and Y. Li, Powder Technol. 361, 529–539 https://doi.org/10.1016/j.powtec.2019.11.082 (2020).

    Article  Google Scholar 

  36. Y. Cao, Y. Sun, P. Gao, Y. Han, and Y. Li, Int. J. Min. Sci. Technol. 31, 1075–1083 https://doi.org/10.1016/j.ijmst.2021.09.008 (2021).

    Article  Google Scholar 

  37. K. Li, J. Chen, G. Chen, J. Peng, R. Ruan, and C. Srinivasakannan, Bioresour. Technol. 286, 121381 https://doi.org/10.1016/j.biortech.2019.121381 (2019).

    Article  Google Scholar 

  38. K. Li, G. Chen, J. Chen, J. Peng, R. Ruan, and C. Srinivasakannan, Bioresour. Technol. 291, 121838 https://doi.org/10.1016/j.biortech.2019.121838 (2019).

    Article  Google Scholar 

  39. X. Wang, L. Mei, X. Xing, L. Liao, G. Lv, Z. Li, and L. Wu, Appl. Catal. B 160–161, 211–216 https://doi.org/10.1016/j.apcatb.2014.05.009 (2014).

    Article  Google Scholar 

  40. F. Wu, Z. Cao, S. Wang, and H. Zhong, J. Alloys Compd. 722, 651–661 https://doi.org/10.1016/j.jallcom.2017.06.142 (2017).

    Article  Google Scholar 

  41. F. Wu, J. Deng, B. Mi, Z. Xiao, J. Kuang, H. Liu, M. Liang, B. Liu, and P. Yu, Powder Technol. 356, 170–176 https://doi.org/10.1016/j.powtec.2019.08.020 (2019).

    Article  Google Scholar 

  42. J. Geng, W.-L. Wang, Y.-X. Yu, J.-M. Chang, L.-P. Cai, and S.Q. Shi, Bioresour. Technol. 227, 1–6 https://doi.org/10.1016/j.biortech.2016.11.036 (2017).

    Article  Google Scholar 

  43. D. Chen, K. Cen, X. Cao, F. Chen, J. Zhang, and J. Zhou, Renew. Sustain. Energy Rev. 136, 110444 https://doi.org/10.1016/j.rser.2020.110444 (2021).

    Article  Google Scholar 

  44. D. Chen, Y. Wang, Y. Liu, K. Cen, X. Cao, Z. Ma, and Y. Li, Fuel 252, 1–9 https://doi.org/10.1016/j.fuel.2019.04.086 (2019).

    Article  Google Scholar 

  45. Z. Abubakar, A.A. Salema, and F.N. Ani, Bioresour. Technol. 128, 578–585 https://doi.org/10.1016/j.biortech.2012.10.084 (2013).

    Article  Google Scholar 

  46. B.T. Pérez-Martínez, M.A. Aboudzadeh, U.S. Schubert, J.R. Leiza, and R. Tomovska, Chem. Eng. J. 399, 125761 https://doi.org/10.1016/j.cej.2020.125761 (2020).

    Article  Google Scholar 

  47. J. Huang, G. Xu, Y. Liang, G. Hu, and P. Chang, Fuel 266, 117022 https://doi.org/10.1016/j.fuel.2020.117022 (2020).

    Article  Google Scholar 

  48. J. Li, J. Dai, G. Liu, H. Zhang, Z. Gao, J. Fu, Y. He, and Y. Huang, Biomass Bioenergy 94, 228–244 https://doi.org/10.1016/j.biombioe.2016.09.010 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Hunan Province Science and Technology Talent Support Project (grant number 2022TJ-N15); Key Scientific research project of Education Department of Hunan Province (grant number 20A245); General Project of Natural Science Foundation of Hunan Province (grant number 2021JJ30410, 2022JJ30348).

Author information

Authors and Affiliations

Authors

Contributions

JH: Conceptualization, Methodology, Formal analysis, Writing—review & editing, Funding acquisition; LC: Investigation, Data curation, Validation, Writing—original draft; JZ: Investigation, Data curation, Formal analysis; YZ: Investigation, Data curation; JZ: Conceptualization, Data curation; LC: Conceptualization, Data curation; WZ: Investigation, Data curation; HT: Investigation, Formal analysis; JY: Investigation, Data curation; FW*: Resources, Funding acquisition, Methodology, Supervision, Validation.

Corresponding author

Correspondence to Fangfang Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 94 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Chen, L., Zhang, J. et al. A Process for Extraction of Manganese from Manganese Oxide Ores by a Novel and Efficient Roasting-Acid Leaching Technique. JOM 75, 3511–3520 (2023). https://doi.org/10.1007/s11837-023-05896-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05896-2

Navigation