Skip to main content
Log in

Facets Formation of Ag3Sn Intermetallic in Sn-Bi-Ag Alloys: An EBSD and First-Principles Study

  • Advanced Technology for Electronic Packaging and Interconnection Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ag3Sn intermetallic growth within Sn-Bi-Ag alloys during relatively slow cooling rates has a pronounced effect on the performance and reliability of solder joints. In this study, we combined experimental electron backscatter diffraction (EBSD) analysis with first-principles calculations to explore the crystal growth and faceting mechanisms of Ag3Sn intermetallic in solidifying Sn-xBi-1Ag (x = 10, 57 wt.%) alloys. Using EBSD techniques, accommodated for a pseudo-hexagonal setting of Ag3Sn to avoid pseudo-symmetry, and subsequent lattice transformation to an orthorhombic structure (a = 5.97 Å, b = 4.78 Å, c = 5.18 Å, Pmmn), this study reveals predominant (001)orth facets in Sn-10Bi-1Ag, and both (001)orth and more frequent (010)orth facets in Sn-57Bi-1Ag. Stability assessments of various crystal surfaces through first-principles calculations found the (010)orth surface to be most stable, followed by the (001)orth. Variations in stable facets between the two alloys may result from energy minimization influenced by atomic attachment at the liquid/solid interface, dynamic non-equilibrium solidification conditions, Bi concentration, and growth twinning. These findings enhance the understanding of intermetallic compound growth in solder alloys, with implications for solder joint technology improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. H.N. Khan, D.A. Hounshell, and E.R.H. Fuchs, Nat. Electron. 1, 14–21 https://doi.org/10.1038/s41928-017-0005-9 (2018).

    Article  Google Scholar 

  2. P. Zhang, S. Xue, and J. Wang, Mater. Des. 192, 108726 https://doi.org/10.1016/j.matdes.2020.108726 (2020).

    Article  Google Scholar 

  3. M.Y. Li, S.K. Su, H.S.P. Wong, and L.J. Li, Nature 567, 169 https://doi.org/10.1038/d41586-019-00793-8 (2019).

    Article  Google Scholar 

  4. S. Chung, and J.B. Kwak, Solder. Surface Mount Technol. 27, 137 https://doi.org/10.1108/SSMT-12-2014-0023 (2015).

    Article  Google Scholar 

  5. R. Aspandiar, K. Byrd, K.K. Tang, L. Campbell, S. Mokler, Investigation of low temperature solders to reduce reflow temperature, improve SMT yields and realize energy savings. Paper presented at Proceedings of the 2015 APEX Conference, San Diego, CA, February 2015.

  6. M. Koide, K. Fukuzono, M. Watanabe, T. Yamamoto, S. Sakuyama, Full low temperature solder BGA development for large size BGA package. Paper presented at 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 3-30 June 2020.

  7. W.R. Myung, M.K. Ko, Y. Kim, and S.B. Jung, J. Mater. Sci. Mater. Electron. 26, 8707–8713 https://doi.org/10.1007/s10854-015-3546-6 (2015).

    Article  Google Scholar 

  8. T. Yang, X. Zhao, Z. Xiong, W. Tan, Y. Wei, C. Tan, X. Yu, and Y. Wang, Mater. Sci. Eng. A 785, 139372 https://doi.org/10.1016/j.msea.2020.139372 (2020).

    Article  Google Scholar 

  9. A.K. Gain, and L. Zhang, J. Mater. Sci. Mater. Electron. 28, 15718 https://doi.org/10.1007/s10854-017-7465-6 (2017).

    Article  Google Scholar 

  10. Y. Ding, F. Wang, Y. Li, and K. Wang, ES Mater. Manuf. 11, 65 https://doi.org/10.3091/esmm5f1045 (2021).

    Article  Google Scholar 

  11. N. Hou, J.W. Xian, A. Sugiyama, H. Yasuda, and C.M. Gourlay, Metall. Mater. Trans. A 54, 909 https://doi.org/10.1007/s11661-022-06937-2 (2023).

    Article  Google Scholar 

  12. Y. Cui, J.W. Xian, A. Zois, K. Marquardt, H. Yasuda, and C.M. Gourlay, Acta Mater. 249, 118831 https://doi.org/10.1016/j.actamat.2023.118831 (2023).

    Article  Google Scholar 

  13. X.J. Hu, W. Sun, J.L. Liao, J.W. Xian, and G. Zeng, Available at SSRN 466, 2023 https://doi.org/10.2139/ssrn.4661936 (1936).

    Article  Google Scholar 

  14. J.W. Xian, G. Zeng, S.A. Belyakov, Q. Gu, K. Nogita, and C.M. Gourlay, Intermetallics 91, 50 https://doi.org/10.1016/j.intermet.2017.08.002 (2017).

    Article  Google Scholar 

  15. S. Kumar, and J. Jung, Mater. Sci. Eng. B 178, 10 https://doi.org/10.1016/j.mseb.2012.10.003 (2013).

    Article  Google Scholar 

  16. M.M. Billah, S. Das, A.R. Aad, and R. Paul, J. Market. Res. 20, 2094 https://doi.org/10.1016/j.jmrt.2022.07.188 (2022).

    Article  Google Scholar 

  17. I.N. Bakst, H. Yu, M. Bahadori, H. Yu, S.W. Lee, M. Aindow, and C.R. Weinberger, Int. J. Plast. 110, 57 https://doi.org/10.1016/j.ijplas.2018.06.008 (2018).

    Article  Google Scholar 

  18. R.S. Sidhu, and N. Chawla, Scripta Mater. 54, 1627 https://doi.org/10.1016/j.scriptamat.2006.01.013 (2006).

    Article  Google Scholar 

  19. H.T. Lee, and Y.F. Chen, J. Alloy. Compd. 509, 2510 https://doi.org/10.1016/j.jallcom.2010.11.068 (2011).

    Article  Google Scholar 

  20. J.M. Song, J.J. Lin, C.F. Huang, and H.Y. Chuang, Mater. Sci. Eng. A 466, 9 https://doi.org/10.1016/j.msea.2007.04.121 (2007).

    Article  Google Scholar 

  21. J. Gong, C. Liu, P.P. Conway, and V.V. Silberschmidt, Mater. Sci. Eng. A 527, 2588 https://doi.org/10.1016/j.msea.2009.12.020 (2010).

    Article  Google Scholar 

  22. S.K. Kang, D.Y. Shih, N.Y. Donald, W. Henderson, T. Gosselin, A. Sarkhel, N.Y. Charles Goldsmith, K.J. Puttlitz and W.K. Choi, JOM, 55, 61 (2003). https://doi.org/10.1007/s11837-003-0143-6

  23. Z.L. Ma, J.W. Xian, S.A. Belyakov, and C.M. Gourlay, Acta Mater. 150, 281 https://doi.org/10.1016/j.actamat.2018.02.047 (2018).

    Article  Google Scholar 

  24. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi, Acta Mater. 57, 941 https://doi.org/10.1016/j.actamat.2008.10.020 (2009).

    Article  Google Scholar 

  25. C. Li, Y.Y. Wu, H. Li, and X.F. Liu, Acta Mater. 59, 1058 https://doi.org/10.1016/j.actamat.2010.10.036 (2011).

    Article  Google Scholar 

  26. C. Chattopadhyay, S. Sangal, and K. Mondal, Acta Mater. 58, 5342 https://doi.org/10.1016/j.actamat.2010.06.009 (2010).

    Article  Google Scholar 

  27. M.G. Tsoutsouva, T. Riberi-Béridot, G. Regula, G. Reinhart, J. Baruchel, F. Guittonneau, L. Barrallier, and N. Mangelinck-Noël, Acta Mater. 115, 210 https://doi.org/10.1016/j.actamat.2016.06.004 (2016).

    Article  Google Scholar 

  28. H. Ouaddah, G. Regula, G. Reinhart, I. Périchaud, F. Guittonneau, L. Barrallier, J. Baruchel, T.N.T. Caliste, and N. Mangelinck-Noël, Acta Mater. 252, 118904 https://doi.org/10.1016/j.actamat.2023.118904 (2023).

    Article  Google Scholar 

  29. A. Kopač Lautar, D. Kopač, T. Rejec, T. Bančič, and R. Dominko, Phys. Chem. Chem. Phys. 21, 2434 https://doi.org/10.1039/C8CP06171H (2019).

    Article  Google Scholar 

  30. F. Bachmann, R. Hielscher, and H. Schaeben, Solid State Phenom. 160, 63 https://doi.org/10.4028/www.scientific.net/SSP.160.63 (2010).

    Article  Google Scholar 

  31. J. Hafner, J. Comput. Chem. 29, 2044 https://doi.org/10.1002/jcc.21057 (2008).

    Article  Google Scholar 

  32. G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 https://doi.org/10.1103/PhysRevB.59.1758 (1999).

    Article  Google Scholar 

  33. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 https://doi.org/10.1103/PhysRevLett.77.3865 (1996).

    Article  Google Scholar 

  34. H.J. Monkhorst, and J.D. Pack, Phys. Rev. B 13, 5188–5192 https://doi.org/10.1103/PhysRevB.13.5188 (1976).

    Article  MathSciNet  Google Scholar 

  35. K.N. Reeve, J.R. Holaday, S.M. Choquette, I.E. Anderson, and C.A. Handwerker, J. Phase Equilib. Diffus. 37, 369 https://doi.org/10.1007/s11669-016-0476-9 (2016).

    Article  Google Scholar 

  36. I. Ohnuma, M. Miyashita, K. Anzai, X.J. Liu, H. Ohtani, R. Kainuma, and K. Ishida, J. Electron. Mater. 29, 1137 https://doi.org/10.1007/s11664-000-0004-9 (2000).

    Article  Google Scholar 

  37. P.J. Rossi, N. Zotov and E.J. Mittemeijer, Zeitschrift für Kristallographie-Crystalline Materials, 231: 1 (2016). https://doi.org/10.1515/zkri-2015-1867

  38. C.W. Fairhurst, and J.B. Cohen, Acta Crystallogr. B 28, 371 https://doi.org/10.1107/S0567740872002432 (1972).

    Article  Google Scholar 

  39. H. Becker, and A. Leineweber, Mater Charact 141, 406 https://doi.org/10.1016/j.matchar.2018.05.013 (2018).

    Article  Google Scholar 

  40. F. Birch, Phys. Rev. 71, 809 https://doi.org/10.1103/PhysRev.71.809 (1947).

    Article  Google Scholar 

  41. H. Yan, W. Guo, T. Luan, X. Ma, G. Xu, X. Leng, W. Zhao, and J. Yan, Mater. Des. 212, 110292 https://doi.org/10.1016/j.matdes.2021.110292 (2021).

    Article  Google Scholar 

  42. M. Wołcyrz, R. Kubiak, and S. Maciejewski, Phys. Status Solidi 107, 245 https://doi.org/10.1002/pssb.2221070125 (1981).

    Article  Google Scholar 

  43. G. Ghosh, S. Delsante, G. Borzone, M. Asta, and R. Ferro, Acta Mater. 54, 4977 https://doi.org/10.1016/j.actamat.2006.04.038 (2006).

    Article  Google Scholar 

  44. H. Flandorfer, U. Saeed, C. Luef, A. Sabbar, and H. Ipser, Thermochim. Acta 459, 34–39 https://doi.org/10.1016/j.tca.2007.04.004 (2007).

    Article  Google Scholar 

  45. R.F. Sekerka, Crystal Growth - From Fundamentals to Technology, ed. G. Müller, J. Métois, Jacques and P. Rudolph (Elsevier Science B.V., Amsterdam, 2004), pp 55-93.

  46. R.P. Kauffman, and A.M. Rappe, Phys. Rev. B 67, 085403 https://doi.org/10.1103/PhysRevB.67.085403 (2003).

    Article  Google Scholar 

  47. H.M. Polatoglou, M. Methfessel, and M. Scheffler, Phys. Rev. B 48, 1877 https://doi.org/10.1103/PhysRevB.48.1877 (1993).

    Article  Google Scholar 

  48. W. Kurz, M. Rappaz, and D.J. Fisher, Fundamentals of Solidification: with Solution Manual (Trans Tech Publications Ltd, Baech, 2023), pp33–50.

    Book  Google Scholar 

Download references

Acknowledgements

G.Z. acknowledges the funding from National Natural Science Foundation of China (51904352), and Scientific Research Foundation of Hunan Provincial Education Department, China (22A0004). This work is partly supported by the Guangdong Basic and Applied Basic Research Foundation under Grant No. 2021B1515120060. Y. R. Wang would like to thank the financial support from the National Natural Science Foundation of China (52001331), and Huxiang Youth Talent Program of Hunan Province, China (2023RC3052). The computational resource at the High-Performance Computing Center of Central South University is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Jieli Liao: Conceptualization, Methodology, Investigation, Data curation, Writing—original draft. Xiaojuan Hu: Methodology, Investigation, Data curation. Yiren Wang: Methodology, Software, Supervision, Writing—review & editing. Wei Sun: Methodology, Investigation, Data curation. Gaoyang Mi: Methodology. Jingwei Xian: Methodology, Writing—review & editing. Guang Zeng: Conceptualization, Software, Writing—review & editing, Supervision, Funding acquisition.

Corresponding authors

Correspondence to Y. R. Wang or G. Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 566 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, J.L., Hu, X.J., Wang, Y.R. et al. Facets Formation of Ag3Sn Intermetallic in Sn-Bi-Ag Alloys: An EBSD and First-Principles Study. JOM 76, 2741–2753 (2024). https://doi.org/10.1007/s11837-024-06500-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06500-x

Navigation