Skip to main content
Log in

Effect of rGO Layering on the Structural, Optical, and Magnetic Properties of Sol–Gel Spin-Coated V-, Ce-, and Mn-Doped NiO Thin Films

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

V-, Ce-, and Mn-doped NiO/rGO bilayer nanocomposite thin films were prepared by the sol–gel spin-coating method. The structural, optical, and magnetic properties of the thin films have been investigated by XRD, XPS, Raman, SEM, UV-visible spectra, photoluminescence (PL) spectra, and SQUID-VSM analysis. The XRD patterns revealed the polycrystalline nature of the NiO thin films and the rGO layering decreased the crystallite size. The binding energy of all the thin films have been calculated using XPS spectra, confirming the cubic structure of NiO. Raman spectra analysis revealed the presence of increased defects corresponding to rGO in the layered films. rGO layering changed the surface morphology of all the doped films. Higher transmittance values have been observed for all the NiO and rGO layered NiO thin films in the visible and IR regions. The layering and doping changed the band gap values significantly. A PL quenching was observed in the rGO layered undoped and doped NiO thin films. Analysis of the magnetic properties revealed the increased values of saturation magnetization and magnetic moment in the rGO layered thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Cao, H. Li, Z. Wang, J. Wei, J. Wang, and Q. Liu, Thin Solid Films 597, 1 https://doi.org/10.1016/j.tsf.2015.11.022 (2015).

    Article  Google Scholar 

  2. S.K. Sarkar, K.K. Rahul, S.S. Pradhan, S. Basu, and A. Nayak, Phys. E Low-Dimens. Syst. Nanostruct. 64, 78 https://doi.org/10.1016/j.physe.2014.07.014 (2014).

    Article  Google Scholar 

  3. M.A. Khan, A. Kumar, J. Zhang, and M. Kumar, J. Mater. Chem. C 9, 8129 https://doi.org/10.1039/D1TC01306H (2021).

    Article  Google Scholar 

  4. D. Sharma, J. Yadav, and B.R. Mehta, Renew. Energy 169, 414 https://doi.org/10.1016/j.renene.2021.01.010 (2021).

    Article  Google Scholar 

  5. R. Tarcan, O. Todor-Boer, I. Petrovai, C. Leordean, S. Astilean, and I. Botiz, J. Mater. Chem. C 8, 198 https://doi.org/10.1039/C9TC04916A (2020).

    Article  Google Scholar 

  6. A. Kaulana, A.Y. Nugraheni, D.N. Jayanti, S. Mustofa, M.A. Baqiya, and Darminto, IOP Conf. Ser. Mater. Sci. Eng. 196, 012021 https://doi.org/10.1088/1757-899X/196/1/012021 (2017).

    Article  Google Scholar 

  7. Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, Nano-Letters 9(1), 220 https://doi.org/10.1021/nl802810g (2009).

    Article  Google Scholar 

  8. D. Kaya, H.S. Aydınoğlu, E.Ş Tüzemen, and A. Ekicibil, Thin Solid Films 732, 138800 https://doi.org/10.1016/j.tsf.2021.138800 (2021).

    Article  Google Scholar 

  9. V. Sushmitha, V. Maragatham, P. Deepak Raj, and M. Sridharan, IOP Conf. Ser. Mater. Sci. Eng. 310, 012022 https://doi.org/10.1088/1757-899X/310/1/012022 (2018).

    Article  Google Scholar 

  10. P. Salunkhe, A.V. Muhammed Ali, and D. Kekuda, Appl. Phys. A 127, 390 https://doi.org/10.1007/s00339-021-04501-0 (2021).

    Article  Google Scholar 

  11. A. Hirohata, K. Yamada, Y. NakataniI, L. Prejbeanu, B. Diény, P. Pirro, and B. Hillebrand, J. Magn. Magn. Mater. 509, 166711 https://doi.org/10.1016/j.jmmm.2020.166711 (2020).

    Article  Google Scholar 

  12. Z. Qiu, H. Gong, G. Zheng, S. Yuan, H. Zhang, X. Zhu, H. Zhou, and B. Cao, J. Mater. Chem. C 5, 7084 https://doi.org/10.1039/C7TC01224A (2017).

    Article  Google Scholar 

  13. A. Kumar and P.P. Sahay, Appl. Phys. A 127, 286 https://doi.org/10.1007/s00339-021-04436-6 (2021).

    Article  Google Scholar 

  14. P. Salunkhe, M. Ali, and A.V. Dhananjaya Kekuda, Mater. Res. Express 7, 016427 https://doi.org/10.1088/2053-1591/ab69c5 (2020).

    Article  Google Scholar 

  15. N.N. Ge, C.-H. Gong, X.-C. Yuan, H.-Z. Zheng, and X.-H. Wei, RSC Adv. 8, 29499 https://doi.org/10.1039/C8RA04784G (2018).

    Article  Google Scholar 

  16. D.L. Sun, B.W. Zhao, J.B. Liu, H. Wang, and H. Yan, Ionics 23, 1509 https://doi.org/10.1007/s11581-017-1974-4 (2017).

    Article  Google Scholar 

  17. G. Santamaría-Juarez, E. Gómez-Barojas, E. Quiroga-González, E. Sánchez-Mora, M. Quintana-Ruiz, and J.D. Santamaría-Juárez, Mater. Res. Express 6, 125631 https://doi.org/10.1088/2053-1591/ab4cbf (2020).

    Article  Google Scholar 

  18. V. Kamble, S. Biswas, V.R. Appu, and A. Kumar, in Carbon Nonmaterial Electronics: Devices and Applications. ed. by A. Hazra, and R. Goswami (Springer, Singapore, 2021), pp. 349–369. https://doi.org/10.1007/978-981-16-1052-3_14.

    Chapter  Google Scholar 

  19. F. Chandoul, H. Moussa, K. Jouini, A. Boukhache, F. Hosni, M.S. Fayache, and R. Schneider, J. Mater. Sci. Mater. Electron. 30, 348 https://doi.org/10.1007/s10854-018-0299-z (2019).

    Article  Google Scholar 

  20. L.P. Yeo, T.D. Nguyen, H. Ling, Y. Lee, D. Mandler, S. Magdassi, A. Iing, and Y. Tok, J. Sci. Adv. Mater. Devices 4, 252 https://doi.org/10.1016/j.jsamd.2019.04.002 (2019).

    Article  Google Scholar 

  21. S. Sadhukhan, A. Bhattacharyya, D. Rana, T. Kumar Ghosh, J.T. Orasugh, S. Khatua, K. Acharya, and D. Chattopadhyay, Mater. Chem. Phys. 247, 122906 https://doi.org/10.1016/j.matchemphys.2020.122906 (2020).

    Article  Google Scholar 

  22. S. Vittorio and S.G. Compagnini, J. Carbon Res. 7, 48 https://doi.org/10.3390/c7020048 (2021).

    Article  Google Scholar 

  23. P. Songkeaw, K. Onlaor, T. Thiwawong, and B. Tunhoo, Mater. Chem. Phys. 226, 302 https://doi.org/10.1016/J.MATCHEMPHYS.2019.01.048 (2019).

    Article  Google Scholar 

  24. Q.A. Khan, A. Shaur, T.A. Khan, Y.F. Joya, and M.S. Awa, Cogenetchemistry 3, 1 https://doi.org/10.1080/23312009.2017.1298980 (2017).

    Article  Google Scholar 

  25. N. Khosla, J. Narayan, R. Narayan, X.G. Sun, and M.P. Paranthaman, Carbon 205, 214 (2023).

    Article  Google Scholar 

  26. J.J. Ding, X.H. Chen, D.Q. Feng, and H.W. Fu, IOP Conf. Ser. Mater. Sci. Eng. 292, 012097 https://doi.org/10.1088/1757-899X/292/1/012097 (2018).

    Article  Google Scholar 

  27. T.M. Kaur, R. Sharma, H. Anjali, G.H. Mustafa, S. Kumar, and J.K. Goswamy, IOP Conf. Ser. Mater. Sci. Eng. 1033, 012053 https://doi.org/10.1088/1757-899X/1033/1/012053 (2021).

    Article  Google Scholar 

  28. P.S. Abid and S. Ahmad, Sci. Rep. 8, 3537 https://doi.org/10.1038/s41598-018-21686-2 (2018).

    Article  Google Scholar 

  29. G. Jeevitha, R. Abhinayaa, D. Mangalaraj, N. Ponpandian, P. Meena, V. Mounasamy, and S. Madanagurusamy, Nanoscale Adv. 1, 1799 https://doi.org/10.1039/C9NA00048H (2019).

    Article  Google Scholar 

  30. A.N. Yadav, A.K. Singh, and P.K. Kumar, Nanoscale Res. Lett. 15, 166 https://doi.org/10.1186/s11671-020-03398-7 (2020).

    Article  Google Scholar 

  31. N. Ali, B. Singh, Z.A. Khan, A.R. Vijaya, K. Tarafder, and S. Ghosh, Sci. Rep. 9, 246 https://doi.org/10.1038/s41598-019-39660-x (2019).

    Article  Google Scholar 

  32. W. Huang, S. Ding, Y. Chen, W. Hao, X. Lai, J. Peng, J. Tu, Y. Cao, and X. Lin, Sci. Rep. 7, 5220 https://doi.org/10.1038/s41598-017-05528-1 (2017).

    Article  Google Scholar 

  33. M. Zhong, W. Wu, H. Wu, and S. Guo, J. Alloys Compd. 765, 69 https://doi.org/10.1016/j.jallcom.2018.06.228 (2018).

    Article  Google Scholar 

  34. M. Coey and S. Sanvito, Phys. World 17(11), 33 (2004).

    Article  Google Scholar 

  35. J. Narayan and N. Khosla, Carbon 192, 301 (2022).

    Article  Google Scholar 

  36. U.K. Panigrahi, P.K. Das, P.D. Babu, N.C. Mishra, and P. Mallick, SN Appl. Sci. 1, 438 https://doi.org/10.1007/s42452-019-0461-0 (2019).

    Article  Google Scholar 

  37. V. Shukla, Nanoscale Adv. 2, 962 https://doi.org/10.1039/C9NA00663J (2020).

    Article  Google Scholar 

  38. Z.N. Kayani, S. Riaz, S. Iram, and S. Naseem, J. Saudi Chem. Soc. 23, 392 https://doi.org/10.1007/s12648-013-0388-z (2019).

    Article  Google Scholar 

  39. P.C. Patel, S. Ghosh, and P.C. Srivastava, Mater. Chem. Phys. 216, 285 https://doi.org/10.1016/j.matchemphys.2018.05.065 (2018).

    Article  Google Scholar 

  40. L.S. Nair, D. Chandran, V.M. Anandakumar, and K. Rajendrababu, Ceram. Int. 43, 11090 https://doi.org/10.1016/j.ceramint.2017.05.155 (2017).

    Article  Google Scholar 

  41. S. Gupta and J. Narayan, Carbon 153, 663 https://doi.org/10.1016/j.carbon.2019.07.064 (2019).

    Article  Google Scholar 

Download references

Acknowledgments

N.R. Aswathy acknowledges junior research fellowship from the University of Kerala, Thiruvananthapuram. The authors also acknowledge RUSA, India, for providing sol-gel spin coating unit and UV-visible spectrophotometer for the completion of this research.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Aswathy, and Vinod Kumar R. The first draft of the manuscript was written by Aswathy and corrected by Shree Renjini and Vinod Kumar. All the authors contributed to previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to R. Vinod Kumar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 650 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aswathy, N.R., Vinod Kumar, R. & Nair, S.R. Effect of rGO Layering on the Structural, Optical, and Magnetic Properties of Sol–Gel Spin-Coated V-, Ce-, and Mn-Doped NiO Thin Films. JOM 76, 2352–2361 (2024). https://doi.org/10.1007/s11837-024-06490-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06490-w

Navigation