Skip to main content
Log in

Concentrating CaO from Lunar Simulant by Calciothermic Reduction Process

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The lunar regolith can be utilized as raw materials for constructing lunar bases through the fabrication of lunar cement. However, the low CaO content in lunar regolith presents a challenge for producing silicate cement. This study explores enriching CaO in NEU-1 lunar soil simulant by calciothermic reduction. Non-isothermal differential scanning calorimetry analysis indicated that calcium reacted with Fe2O3, SiO2, and Al2O3 at approximately 808°C, 816°C, and 826°C, respectively. The reaction ratios were 1.1, 1.6, and 0.8, with apparent activation energies of 941.6 kJ/mol, 965.17 kJ/mol, and 547.28 kJ/mol. The products obtained from the calciothermic reduction of lunar soil simulant were CaO, Ca2Si, and AlFe, as analyzed by X-ray diffraction. Increasing the temperature was found to be beneficial to the reaction process, and a suitable reaction temperature of 850°C was determined. X-ray photoelectron spectroscopy analysis showed that the reduction percentages of SiO2 and Al2O3 were 93.01% and 91.04%, respectively, at 850°C for 30 min. The CaO content in the product obtained by calciothermic reduction was 50.65%, which could be further increased to 81.16% after crude purification, and the CaO yield was 82.57%. These results demonstrated that the process has a significant CaO enrichment effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Benaroya and L. Bernold, Acta Astronaut. 62, 277 (2008).

    Article  Google Scholar 

  2. L. Wang, D. Guo, Z. Zhang, Z. Lyu, M. Zhao, and Y. Liu, Spacecr. Recovery Remote Sens. 41, 1 (in Chinese) (2020).

    Google Scholar 

  3. F. Xu and J. Ou, Acta Astronaut. 203, 341 (2023).

    Article  Google Scholar 

  4. I. Casanova, Exploration of lunar resources for in-situ utilisation, in Paper presented at Proceedings of The Fourth International Conference on Exploration of The Moon, vol 462 (2000), p. 239.

  5. T. Zhang, Y. Li, Y. Chen, X. Feng, X. Zhu, Z. Chen, J. Yao, Y. Zheng, J. Cai, H. Song, and S. Sun, Appl. Energy 292, 116896 (2021).

    Article  Google Scholar 

  6. C. Schwandt, J.A. Hamilton, D.J. Fray, and I.A. Crawford, Planet. Space Sci. 74, 49 (2012).

    Article  Google Scholar 

  7. Y. Lu, D. Mantha, and R.G. Reddy, Metall. Mater. Trans. B 41, 1321 (2010).

    Article  Google Scholar 

  8. R.J. Gustafson, E.E. Rice, and B.C. White, AIP Conf. Proc. 746, 1224 (2005).

    Article  Google Scholar 

  9. Y. Zhao and F. Shadman, AIChE J. 36, 1433 (1990).

    Article  Google Scholar 

  10. A. Liu, Z. Shi, X. Hu, B. Gao, and Z. Wang, J. Electrochem. Soc. 164, H126 (2017).

    Article  Google Scholar 

  11. A. Liu, Z. Shi, X. Hu, B. Kubikova, M. Boca, B. Gao, and Z. Wang, J. Alloys Compd. 718, 279 (2017).

    Article  Google Scholar 

  12. B.A. Lomax, M. Conti, N. Khan, N.S. Bennett, A.Y. Ganin, and M.D. Symes, Planet. Space Sci. 180, 104748 (2020).

    Article  Google Scholar 

  13. L. Sibille, D. Sadoway, A. Sirk, P. Tripathy, O. Melendez, E. Standish, J. Dominguez, D. Stefanescu, P. Curreri, and S. Poizeau, Recent advances in scale-up development of molten regolith electrolysis for oxygen production in support of a lunar base, in Paper Presented at 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando, Florida, 5–8 Jan 2009.

  14. K. Xie, Z. Shi, J. Xu, X. Hu, B. Gao, and Z. Wang, JOM 69, 1963 (2017).

    Article  Google Scholar 

  15. A. Liu, Z. Shi, J. Xu, X. Hu, B. Gao, and Z. Wang, JOM 68, 1518 (2016).

    Article  Google Scholar 

  16. A. Khitab, W. Anwar, I. Mehmood, S.M.S. Kazmi, and M.J. Munir, Astron. Rep. 60, 306 (2016).

    Article  Google Scholar 

  17. Y.C. Toklu and P. Akpinar, Adv. Space Res. 70, 762 (2022).

    Article  Google Scholar 

  18. S. Wilhelm and M. Curbach, Struct. Concr. 15, 419 (2014).

    Article  Google Scholar 

  19. H.A. Toutanji, S. Evans, and R.N. Grugel, Constr. Build. Mater. 29, 444 (2012).

    Article  Google Scholar 

  20. R.N. Grugel, Adv. Space Res. 50, 1294 (2012).

    Article  Google Scholar 

  21. R.N. Grugel and H. Toutanji, Adv. Space Res. 41, 103 (2008).

    Article  Google Scholar 

  22. T. Chen, B.J. Chow, M. Wang, Y. Shi, C. Zhao, and Y. Qiao, J. Mater. Civ. Eng. 28, 06015013 (2016).

    Article  Google Scholar 

  23. T. Chen, B.J. Chow, M. Wang, Y. Zhong, and Y. Qiao, J. Mater. Civ. Eng. 29, 06017013 (2017).

    Article  Google Scholar 

  24. T. Sik Lee, J. Lee, and K. Yong Ann, Acta Astronaut. 114, 60 (2015).

    Article  Google Scholar 

  25. W. Kaituo, P.N. Lemougna, T. Qing, L. Wei, and C. Xuemin, Gondwana Res. 44, 1 (2017).

    Article  Google Scholar 

  26. S. Lee and A.V. Riessen, Materials 15, 4516 (2022).

    Article  Google Scholar 

  27. K. Wang, Q. Tang, X. Cui, Y. He, and L. Liu, Sci. Rep. 6, 29659 (2016).

    Article  Google Scholar 

  28. N. Su and Y. Peng, Cem. Concr. Res. 31, 609 (2001).

    Article  Google Scholar 

  29. I. Casanova and V. Aulesa, Construction materials from in-situ resources on the Moon and Mars, in Paper Presented at Seventh International Conference and Exposition on Engineering, Construction, Operations, and Business in Space, Albuquerque, New Mexico, 27 Feb–2 Mar 2000.

  30. C. Li, K. Xie, A. Liu, and Z. Shi, JOM 71, 1471 (2019).

    Article  Google Scholar 

  31. B.M. Willman, W.W. Boles, D.S. McKay, and C.C. Allen, J. Aerosp. Eng. 8, 77 (1995).

    Article  Google Scholar 

  32. Y. Zheng, S. Wang, Z. Ouyang, Y. Zou, J. Liu, C. Li, X. Li, and J. Feng, Adv. Space Res. 43, 448 (2009).

    Article  Google Scholar 

  33. C. Li, H. Hu, M. Yang, Z. Pei, Q. Zhou, X. Ren, B. Liu, D. Liu, X. Zeng, G. Zhang, H. Zhang, J. Liu, Q. Wang, X. Deng, C. Xiao, Y. Yao, D. Xue, W. Zuo, Y. Su, W. Wen, and Z. Ouyang, Natl. Sci. Rev. 9, nwab188 (2022).

    Article  Google Scholar 

  34. A. Jerez, J. Therm. Anal. Calorim. 26, 315 (1983).

    Article  Google Scholar 

  35. E.S. Freeman and B. Carroll, J. Phys. Chem. 62, 394 (1958).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52074084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongning Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, D., Zhang, Y. et al. Concentrating CaO from Lunar Simulant by Calciothermic Reduction Process. JOM 76, 2403–2413 (2024). https://doi.org/10.1007/s11837-024-06488-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06488-4

Navigation