Skip to main content
Log in

Exploration of TiAl3 Phase Nucleation Mechanism in Al–5Ti–B Master Alloy

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In the field of aluminum alloy processing, Al–5Ti–B master alloy stands out as the most widely used grain refiner. The morphology, distribution and quantity of the TiAl3 phase in the master alloy are critical factors influencing refining effect. In this study, Al–5Ti–B master alloy was prepared by fluoride salt reaction method. The influences of feeding temperature (700–900°C) on the preparation of Al–5Ti–B master alloy were discussed in terms of microstructure characteristics, elemental yields, grain refinement effects and master alloy hardness. The results indicated that with the increasing of feeding temperature, the size of the TiAl3 phase in the Al–5Ti–B master alloy was gradually decreased until it disappeared, with a gradual increasing of holes. The element recovery rates, refinement effects and master alloy hardness all trended downward. Furthermore, the nucleation mechanism of the TiAl3 phase was discussed. Based on the impact of feeding temperature on the morphology of the TiAl3 phase and the analysis of the diffusion movement of Ti element in the melt, coupled with thermodynamic theory, the difficulty of nucleation of the TiAl3 phase at high temperatures was explained. This study is intended to provide a reference for the control of feeding temperature during the industrial production of high-quality Al–5Ti–B master alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.H. Li, F.S. Hage, Q.M. Ramasse, and P. Schumacher, Acta Mater. 206, 116652 (2021).

    Article  Google Scholar 

  2. Z. Fan, F. Gao, B. Jiang, and Z. Que, Sci. Rep. 10, 428 (2020).

    Article  Google Scholar 

  3. Y. Li, B. Hu, B. Liu, A. Nie, and Q. Li, Acta Mater. 187, 51 (2020).

    Article  Google Scholar 

  4. W. Ding, X. Zhao, T. Chen, H. Zhang, X. Liu, Y. Cheng, and D. Lei, J. Alloys Compd. 830, 154685 (2020).

    Article  Google Scholar 

  5. M. Riestra, E. Ghassemali, T. Bogdanoff, and S. Seifeddine, Mater. Sci. Eng. A 703, 270 (2017).

    Article  Google Scholar 

  6. Z. Fan, Y. Wang, Y. Zhang, T. Qin, X. Zhou, G. Thompson, T. Pennycook, and T. Hashimoto, Acta Mater. 84, 292 (2015).

    Article  Google Scholar 

  7. J. Li, E. Wu, J. Hou, Z. Xu, H. Li, and H. Gong, Iron Steel Vanadium Titanium China 44, 61 (2023).

    Google Scholar 

  8. H. Ding, T. Zhang, Z. Zhang, and Q. Liu, Trans. Mater Heat Treat. 43, 31 (2022).

    Google Scholar 

  9. L. Zhang, H. Jiang, J. Zhao, and J. He, J. Mater. Process. Technol. 246, 205 (2017).

    Article  Google Scholar 

  10. Y. Birol, J. Alloy. Compd. 443, 94 (2007).

    Article  Google Scholar 

  11. H. Pourbagheri, and H. Aghajani, Int. J. Self-Propagat. High-Temp. Synth. 27, 245 (2018).

    Article  Google Scholar 

  12. H. Li, L. Chai, H. Wang, Z. Chen, G. Shi, Z. Xiang, and T. Jin, J. Mater. 32, 2352 (2017).

    Google Scholar 

  13. S. Liu, T. Zhao, J. Fu, and Q. Zu, Materials 16, 3 (2023).

    Google Scholar 

  14. V. Auradi, and S.A. Kori, Trans. Inndian I Metals. 65, 637 (2014).

    Article  Google Scholar 

  15. Z. Zhang, X. Bian, Y. Wang, and X. Liu, Mater. Sci. Eng. A 352, 8 (2003).

    Article  Google Scholar 

  16. P.S. Monhanty, and J.E. Gruzleski, Acta Metall. Mater. 42, 2001 (1995).

    Article  Google Scholar 

  17. G.P. Jones, Proceedings of International Seminar on “Refining and alloying of liquid Al and,ferro-alloys”, 213 (1985).

  18. K.T. Kashyap, and T. Chandrashekar, Bull. Mater. Sci. 24, 345 (2001).

    Article  Google Scholar 

  19. M.M. Guzowski, G.K. Sigworth, and D.A. Sentner, Metall. Mater. Trans. 18, 603 (1987).

    Article  Google Scholar 

  20. X. Wang, J. Song, W. Vian, H. Ma, and Q. Han, Metall. Mater. Trans. B 47, 3285 (2016).

    Article  Google Scholar 

  21. P. Li, Y. Li, J. Nie, and X. Liu, Trans. Nonferrous Met. Soc. China 22, 564 (2012).

    Article  Google Scholar 

  22. X.F. Liu, X.F. Bian, and Y. Yang, Spec. Cast. Nonferrous Alloys 5, 4 (1997).

    Google Scholar 

  23. L. Arnberg, Solidification Technology in the Foundry and Casthouse. (1980).

  24. Y. Birol, J. Alloy. Compd. 420, 207 (2006).

    Article  Google Scholar 

  25. M. Zhan, and C. Li, Anal. Test. Technol. Instrum. 26, 132 (2020).

    Google Scholar 

  26. S. Ji, Y. Wang, D. Watson, and Z. Fan, Metall. Mater. Trans. A 44, 3185 (2013).

    Article  Google Scholar 

  27. V.M. Imayev, R.M. Imayev, and T.I. Nazarova, Lett. Mater. 8, 554 (2018).

    Article  Google Scholar 

  28. N. Thiyaneshwaran, K. Sivaprasad, B. Ravisankar, D. Biswaranjan, and S. Karthikeyan, J. Mater. Eng. Perform. 31, 8483 (2022).

    Article  Google Scholar 

  29. C.S. Ramesh, S. Pramod, and R. Keshavamurthy, Mater. Sci. Eng. A 528, 4125 (2011).

    Article  Google Scholar 

  30. C. Liao, W. Chen, H. Chen, J. Fu, and C. Pan, Chin. J. Nonferrous Met. 26, 204 (2016).

    Article  Google Scholar 

  31. X. Huang, G. Tu, S. Wang, J. Song, Y. Liu, and Z. Wang, Rare Metal Mat. Eng. 51, 1087 (2022).

    Google Scholar 

  32. M. Emamy, M. Mahta, and J. Rasizadeh, Compos. Sci. Technol. 66, 1063 (2006).

    Article  Google Scholar 

  33. H. Wu, Y. Xu, Z. Wang, Z. Liu, Q. Li, J. Li, and J. Wu, J. Mater. Sci. Technol. 52, 235 (2020).

    Article  Google Scholar 

  34. Y. Zhao, Z. Lu, L. Mi, Z. Hu, and W. Yang, Materials 15, 1984 (2022).

    Article  Google Scholar 

  35. B. Xu, Y. Cao, Z. Wang, P. Du, and Y. Lon, Minerals 12, 925 (2022).

    Article  Google Scholar 

  36. D. Sun, and L. Wang, Shanghai Nonferrous Met. 2, 1 (1992).

    Google Scholar 

  37. A. Beltyukov, V. Ladyanov, and I. Sterkhova, J. Mol. Liq. 296, 111764 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the industry-university-research Joint Innovation Project of Longyan City (No. 2022LYF18003) and the Technology Research and Industrial Application of New Aluminum Alloy Grain Refiner Related Products and Aphanitic Graphite Deep Purification. Thanks for the experiment conditions provided by Jiuding Fluorine Chemical Co., Ltd.

Author information

Authors and Affiliations

Authors

Contributions

XG: Manuscript writing. CZ: Format modification and review. QY, ML, FS, DY, ZL, YZ: Provision and guidance of experimental equipment. YL: Thermodynamic calculations. LH: Review. XL: Project administration.

Corresponding authors

Correspondence to Chentong Zhang or Xuetao Luo.

Ethics declarations

Conflict of interest

The authors state that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, X., Zhang, C., Li, Y. et al. Exploration of TiAl3 Phase Nucleation Mechanism in Al–5Ti–B Master Alloy. JOM 76, 2537–2546 (2024). https://doi.org/10.1007/s11837-024-06452-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06452-2

Navigation