Skip to main content
Log in

Effect of Rare Earth Y Addition on the Microstructure and Properties of Stellite6/WC Coating by Laser Cladding

  • Advanced Functional and Structural Thin Films and Coatings
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Forty five steel is a commonly used metal material in the machinery manufacturing industry. To improve the hardness and wear resistance of 45 steel, a Stellite6/WC Co-based alloy composite coating with rare earth Y was prepared on a 45 steel substrate by laser cladding technology. The effects of different additions of rare earth Y on the morphology, phase composition, microstructure, microhardness, and wear resistance of Stellite6/WC composite coatings after laser cladding were studied, and the optimal addition of rare earth Y was determined. The results showed that the addition of 0.9 wt.% rare earth Y coating to a Stellite6/WC composite coating has the best comprehensive performance. The X-ray diffraction results showed that new phases such as Y2O3, Co2Y, and Y2Co17 were formed after the addition of rare earth Y. Scanning electron microscopy showed that the coating bonding region was mainly composed of fine cellular crystals and columnar dendrites when the rare earth Y content was 0.9 wt.%, and that the upper region grains also became finer and the volume fraction of eutectics increased. Compared with the coating without the addition of rare earth Y, the maximum average microhardness was 629 HV0.2, and increase of 18.1% and the wear mass loss was reduced by 60.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Zhu, S. Wang, H. Pan, C. Yuan, and X. Chen, J. Manuf. Process. 49, 344 https://doi.org/10.1016/j.jmapro.2019.12.009 (2020).

    Article  Google Scholar 

  2. G.S. Li, Z.Y. Wang, L.G. Yao, J.X. Ding, and J.J. Gao, Surf. Coat. Technol. 455, 129233 https://doi.org/10.1016/j.surfcoat.2023.129233 (2023).

    Article  Google Scholar 

  3. X. Quan and L. Ding, Sci. Adv. Mater. 11, 1798 https://doi.org/10.1166/sam.2019.3610 (2019).

    Article  Google Scholar 

  4. Z.Y. Li, H. Yan, P.L. Zhang, J.L. Guo, Z.S. Yu, and J.W. Ringsberg, Surf. Coat. Technol. 405, 126592 https://doi.org/10.1016/j.surfcoat.2020.126592 (2021).

    Article  Google Scholar 

  5. M. Erfanmanesh, R. Shoja-Razavi, H. Abdollah-Pour, H. Mohammadian-Semnani, M. Barekat, and S.H. Hashemi, Int. J. Refract. Met. Hard Mater. 81, 137 https://doi.org/10.1016/j.ijrmhm.2019.02.025 (2019).

    Article  Google Scholar 

  6. J. Ke, X.B. Liu, M. Wang, J. Liang, Y.S. Luo, and D.Q. Chen, J. Mater. Res. Technol. 9, 6397 https://doi.org/10.1016/j.jmrt.2020.04.023 (2020).

    Article  Google Scholar 

  7. Y.L. Xia, H.N. Chen, X.D. Liang, and J.B. Lei, J. Manuf. Process. 68, 1694 https://doi.org/10.1016/j.jmapro.2021.06.074 (2021).

    Article  Google Scholar 

  8. G.Y. Wang, J.Z. Zhang, R.Y. Shu, and S. Yang, Int. J. Refract. Met. Hard Mater. 81, 63 https://doi.org/10.1016/j.ijrmhm.2019.02.024 (2019).

    Article  Google Scholar 

  9. Y.Z. Zhang, P.Q. Xu, C.G. Liu, J.W. Ren, and H.Y. Gong, Appl. Surf. Sci. 469, 495 https://doi.org/10.1016/j.apsusc.2018.11.084 (2019).

    Article  Google Scholar 

  10. M. Radhakrishnan, M.M. Hassan, B.E. Long, D. Otazu, T.J. Lienert, and O. Anderoglu, Addit. Manuf. 46, 102198 https://doi.org/10.1016/j.addma.2021.102198 (2021).

    Article  Google Scholar 

  11. F. Weng, H.J. Yu, C.Z. Chen, J.L. Liu, and L.J. Zhao, J. Alloys Compd. 650, 178 https://doi.org/10.1016/j.jallcom.2015.07.295 (2015).

    Article  Google Scholar 

  12. X.Y. Zhang, S. Pfeiffer, P. Rutkowski, M. Makowska, D. Kata, J.L. Yang, and T. Graule, Appl. Surf. Sci. 520, 146304 https://doi.org/10.1016/j.apsusc.2020.146304 (2020).

    Article  Google Scholar 

  13. H.B. Ma and W.P. Zhang, Rare Metal Mater. Eng. 39, 1239 (2010).

    Google Scholar 

  14. A. Vi, F. Os, and A. Et, Procedia Manuf. https://doi.org/10.1016/j.promfg.2019.04.089 (2019).

    Article  Google Scholar 

  15. F. Weng, H.J. Yu, J.L. Liu, C.Z. Chen, J.J. Dai, and Z.H. Zhao, Opt. Laser Technol. 92, 156 https://doi.org/10.1016/j.optlastec.2017.01.014 (2017).

    Article  Google Scholar 

  16. D. Bartkowski and G. Kinal, Int. J. Refract. Met. Hard Mater. 58, 157 https://doi.org/10.1016/j.ijrmhm.2016.04.017 (2016).

    Article  Google Scholar 

  17. L. Chen, W.G. Chen, D.Y. Li, P.Y. Jing, H.Z. Yin, H.J. Wu, Y. Xie, and X.N. Wang, Tribol. Int. 169, 107428 https://doi.org/10.1016/j.triboint.2022.107428 (2022).

    Article  Google Scholar 

  18. B.L. Ezquerra, L. Lozada, H. van den Berg, M. Wolf, and J.M. Sánchez, Int. J. Refract. Met. Hard Mater. 72, 89 https://doi.org/10.1016/j.ijrmhm.2017.12.021 (2018).

    Article  Google Scholar 

  19. D. Bartkowski, A. Młynarczak, A. Piasecki, B. Dudziak, M. Gościański, and A. Bartkowska, Opt. Laser Technol. 68, 191 https://doi.org/10.1016/j.optlastec.2014.12.005 (2015).

    Article  Google Scholar 

  20. P.H. Xu, L.D. Zhu, P.S. Xue, Z.C. Yang, S.H. Wang, J.S. Ning, G.R. Meng, Q. Lan, and S.Q. Qin, Ceram. Int. 48, 9218 https://doi.org/10.1016/j.ceramint.2021.12.108 (2022).

    Article  Google Scholar 

  21. T. Wang, L. Zhu, H. Song, and H. Wang, Opt. Laser Technol. 148, 107780 https://doi.org/10.1016/j.optlastec.2021.107780 (2022).

    Article  Google Scholar 

  22. G.J. Xu and M. Kutsuna, Surf. Eng. 22, 345 https://doi.org/10.1179/174329406X98430 (2013).

    Article  Google Scholar 

  23. W.Y. Li, X.F. Yang, J.P. Xiao, and Q.M. Hou, Ceram. Int. 47, 28754 https://doi.org/10.1016/j.ceramint.2021.07.035 (2021).

    Article  Google Scholar 

  24. W.H. Jiang and R. Kovacevic, J. Mater. Process. Technol. 186, 331 https://doi.org/10.1016/j.jmatprotec.2006.12.053 (2007).

    Article  Google Scholar 

  25. A.K. Das, Mater. Today Proceed. 52, 1558 https://doi.org/10.1016/j.matpr.2021.11.236 (2022).

    Article  Google Scholar 

  26. Y. Fan, G. Jin, X. Cui, Y. Li, and Z. Gao, Surf. Coat. Technol. 288, 25 https://doi.org/10.1016/j.surfcoat.2016.01.007 (2016).

    Article  Google Scholar 

  27. I. Radu, D.Y. Li, and R. Llewellyn, Wear 257, 1154 https://doi.org/10.1016/j.wear.2004.07.013 (2004).

    Article  Google Scholar 

  28. B. Han, J.Y. Lin, X.R. Han, H. Wang, and W.H. Cui, Surf. Eng. 37, 982 https://doi.org/10.1080/02670844.2020.1848008 (2020).

    Article  Google Scholar 

  29. S.T. Sun, H.G. Fu, X.L. Ping, X.Y. Guo, J. Lin, Y.P. Lei, W.B. Wu, and J.X. Zhou, Surf. Coat. Technol. 359, 300 https://doi.org/10.1016/j.surfcoat.2018.12.083 (2019).

    Article  Google Scholar 

  30. M.Z. Du, L.L. Wang, Z.N. Gao, X.Y. Yang, T. Liu, and X.H. Zhan, Opt. Laser Technol. 153, 108205 https://doi.org/10.1016/j.optlastec.2022.108205 (2022).

    Article  Google Scholar 

  31. Y.M. Shi, J.B. Li, J. Zhang, B.Q. Wen, L.Q. Li, X.F. Wang, and S.X. Ren, Opt. Laser Technol. 148, 107640 https://doi.org/10.1016/j.optlastec.2021.107640 (2022).

    Article  Google Scholar 

  32. T.G. Zhang, H.Q. Xiao, Z.Q. Zhang, B. Yao, and F. Yang, J. Mater. Eng. Perform. 29, 8221 https://doi.org/10.1007/s11665-020-05316-5 (2020).

    Article  Google Scholar 

  33. Q. Wang, J. Yang, W.J. Niu, Y. Li, X. Mao, Y. Wang, and K. Zhang, Optik 245, 167653 https://doi.org/10.1016/j.ijleo.2021.167653 (2021).

    Article  Google Scholar 

  34. Z.C. Liu, C. He, and D.J. Kong, Opt. Laser Technol. 168, 109801 https://doi.org/10.1016/j.optlastec.2023.109801 (2024).

    Article  Google Scholar 

  35. Q.S. Liu, X.B. Liu, G. Wang, Y.F. Liu, Y. Meng, and S.H. Zhang, Opt. Laser Technol. 156, 108549 https://doi.org/10.1016/j.optlastec.2022.108549 (2022).

    Article  Google Scholar 

  36. M.M. Quazi, M.A. Fazal, A.S.M.A. Haseeb, F. Yusof, H.H. Masjuki, and A. Arslan, J. Rare Earths 34, 549 https://doi.org/10.1016/s1002-0721(16)60061-3 (2016).

    Article  Google Scholar 

  37. K.L. Wang, Q.B. Zhang, M.L. Sun, and X.G. Wei, J. Mater. Process. Technol. 139, 448 https://doi.org/10.1016/s0924-0136(03)00551-x (2003).

    Article  Google Scholar 

  38. M. Erfanmanesh, H. Abdollah-Pour, H. Mohammadian-Semnani, and R. Shoja-Razavi, Ceram. Int. 44, 12805 https://doi.org/10.1016/j.ceramint.2018.04.087 (2018).

    Article  Google Scholar 

  39. J. Nerz, B. Kushner, and A. Rotolico, J. Therm. Spray Technol. https://doi.org/10.1007/BF02659015 (1992).

    Article  Google Scholar 

  40. J. Li, H. Wang, M. Li, and Z. Yu, J. Rare Earths 29, 477 https://doi.org/10.1016/S1002-0721(10)60483-8 (2011).

    Article  Google Scholar 

  41. L.C. Wang and D.Y. Li, Wear 255, 535 https://doi.org/10.1016/s0043-1648(03)00057-7 (2003).

    Article  Google Scholar 

  42. C.L. Wang, Y. Gao, Z.C. Zeng, and Y.K. Fu, J. Alloy. Compd. 727, 278 https://doi.org/10.1016/j.jallcom.2017.08.101 (2017).

    Article  Google Scholar 

  43. L. Ding, S. Hu, X. Quan, and J. Shen, J. Alloys Compd. 659, 8 https://doi.org/10.1016/j.jallcom.2015.11.036 (2016).

    Article  Google Scholar 

  44. K.L. Wang, Q.B. Zhang, M.L. Sun, X.G. Wei, and Y.M. Zhu, Appl. Surf. Sci. 174, 191 (2001).

    Article  Google Scholar 

  45. C.F. Wu, M.X. Ma, W.J. Liu, M.L. Zhong, H.J. Zhang, and W.M. Zhang, J. Rare Earths 27, 997 https://doi.org/10.1016/s1002-0721(08)60377-4 (2009).

    Article  Google Scholar 

  46. Y. Hou, H. Chen, Q. Cheng, L. Fan, and L. Dong, Mater. Express 10, 634 https://doi.org/10.1166/mex.2020.1686 (2020).

    Article  Google Scholar 

  47. Z.Y. Hu, Y. Li, B.W. Lu, N. Tan, L.R. Cai, and Q.S. Yong, Opt. Laser Technol. 155, 108449 https://doi.org/10.1016/j.optlastec.2022.108449 (2022).

    Article  Google Scholar 

  48. Z.Z. Yang, H. Hao, Q. Gao, Y.B. Cao, R.H. Han, and H.B. Qi, Surf. Coat. Technol. 405, 126544 https://doi.org/10.1016/j.surfcoat.2020.126544 (2021).

    Article  Google Scholar 

  49. H. Lv, Y. Liu, H. Chen, W. Zhang, S.Y. Lv, and D.P. He, Surf. Coat. Technol. 464, 129529 https://doi.org/10.1016/j.surfcoat.2023.129529 (2023).

    Article  Google Scholar 

  50. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon, Acta Mater. 44, 4619 (1996).

    Article  Google Scholar 

  51. X.H. Wang, S.S. Liu, M. Zhang, and K.L. Qu, Tribol. Trans. 63, 345 https://doi.org/10.1080/10402004.2019.1694200 (2019).

    Article  Google Scholar 

  52. P.A. Molian and L. Hualun, Wear, 130, 337 (1989).

    Article  Google Scholar 

  53. Y. Shi, Y.F. Li, J. Liu, and Z.Y. Yuan, Opt. Laser Technol. 99, 256 https://doi.org/10.1016/j.optlastec.2017.09.010 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Hebei Province (No. E2021209026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoqiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhang, H., Hou, S. et al. Effect of Rare Earth Y Addition on the Microstructure and Properties of Stellite6/WC Coating by Laser Cladding. JOM 76, 2143–2153 (2024). https://doi.org/10.1007/s11837-024-06379-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-024-06379-8

Navigation