Skip to main content
Log in

Phase Field Modeling of Pressure Induced Densification in Solid Electrolytes

  • Mechanistic Interactions in Energy Storage
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Adoption of dense and homogeneous solid electrolytes can possibly mitigate the propagation of lithium dendrites and enable lithium metal anodes. Application of external pressure helps to minimize the sintering temperature in oxide ceramics and can potentially densify softer sulfide electrolytes even under room temperature conditions. A previously developed phase field-based computational scheme for predicting the high-temperature sintering-induced densification of oxide ceramic solid electrolytes is extended in the present context to capture the influence of external pressure for densifying solid electrolytes. Two different bulk deformation mechanisms, namely, “reorganization” and “creep deformation,” are dominant under external pressure, which is different from the surface and grain-boundary diffusion-induced densification of solid electrolytes that occurs during high temperature sintering. External pressure also increases the points of contact between the particles, which further enhances the propensity of diffusion-induced sintering process. Results obtained from simulations indicate that densification under external pressure is independent of the solid electrolyte particle morphology. Finally, a phase map is generated between applied pressure and temperature for achieving complete densification of oxide ceramics, which can possibly guide the synthesis of thin and dense solid electrolyte separators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Janek and W.G. Zeier, Nat. Energy 1, 1 (2016).

    Article  Google Scholar 

  2. J. Janek and W.G. Zeier, Nat. Energy 8, 230 (2023).

    Article  ADS  Google Scholar 

  3. Y.S. Meng, V. Srinivasan, and K. Xu, Science 378, eabq3750 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. J. Sakamoto, Nat. Energy 4, 827 (2019).

    Article  ADS  Google Scholar 

  5. E.J. Cheng, A. Sharafi, and J. Sakamoto, Electrochim. Acta 223, 85 (2017).

    Article  CAS  Google Scholar 

  6. F. Shen, M.B. Dixit, X. Xiao, and K.B. Hatzell, ACS Energy Lett. 3, 1056 (2018).

    Article  CAS  Google Scholar 

  7. L. Wang, J. Li, G. Lu, W. Li, Q. Tao, C. Shi, H. Jin, G. Chen, and S. Wang, Front. Mater. 7, 111 (2020).

    Article  ADS  Google Scholar 

  8. B. Xu, H. Duan, W. Xia, Y. Guo, H. Kang, H. Li, and H. Liu, J. Power. Sources 302, 291 (2016).

    Article  ADS  CAS  Google Scholar 

  9. W. Xue, Y. Yang, Q. Yang, Y. Liu, L. Wang, C. Chen, and R. Cheng, RSC Adv. 8, 13083 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. C. Mi and S.R. Hall, Solid State Ionics 389, 116106 (2023).

    Article  CAS  Google Scholar 

  11. S. Wang, Y. Wu, H. Li, L. Chen, and F. Wu, InfoMat 4, e12316 (2022).

    Article  CAS  Google Scholar 

  12. T. Ohtomo, A. Hayashi, M. Tatsumisago, and K. Kawamoto, J. Mater. Sci. 48, 4137 (2013).

    Article  ADS  CAS  Google Scholar 

  13. T.A. Yersak, Y. Zhang, F. Hao, and M. Cai, Front. Energy Res. 10, 882508 (2022).

    Article  Google Scholar 

  14. A. Sharafi, C.G. Haslam, R.D. Kerns, J. Wolfenstine, and J. Sakamoto, J. Mater. Chem. A 5, 21491–21504 (2017).

    Article  CAS  Google Scholar 

  15. J.-M. Doux, Y. Yang, D.H. Tan, H. Nguyen, E.A. Wu, X. Wang, A. Banerjee, and Y.S. Meng, J. Mater. Chem. A 8, 5049 (2020).

    Article  CAS  Google Scholar 

  16. H.-Y. Li, B. Huang, Z. Huang, and C.-A. Wang, Ceram. Int. 45, 18115 (2019).

    Article  Google Scholar 

  17. S. Valiyaveettil-SobhanRaj, P. Gluchowski, P. Lopez-Aranguren Oliver, F. Aguesse, R. Sampathkumar, T. Thompson, C. Rojviriya, W. Manalastas, M. Srinivasan and M. Casas-Cabanas, Available at SSRN 4522607.

  18. A. Sharafi, S. Yu, M. Naguib, M. Lee, C. Ma, H.M. Meyer, J. Nanda, M. Chi, D.J. Siegel, and J. Sakamoto, J. Mater. Chem. A 5, 13475–13487 (2017).

    Article  CAS  Google Scholar 

  19. R.-H. Shin, S.-I. Son, S.-M. Lee, Y.S. Han, Y.D. Kim, and S.-S. Ryu, J. Kore. Ceram. Soc. 53, 9 (2016).

    Google Scholar 

  20. A. Sakuda, A. Hayashi, and M. Tatsumisago, Sci. Rep. 3, 2261 (2013).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. P. Barai, T. Fister, Y. Liang, J. Libera, M. Wolfman, X. Wang, J. Garcia, H. Iddir, and V. Srinivasan, Chem. Mater. 33, 4337–4352 (2021).

    Article  CAS  Google Scholar 

  22. Y.U. Wang, Acta Mater. 54, 953–961 (2006).

    Article  ADS  CAS  Google Scholar 

  23. S. Chen, Y. Xu, and Y. Jiao, AIMS Mater. Sci. 4, 75–88 (2017).

    Article  Google Scholar 

  24. S. Chen, Y. Xu, and Y. Jiao, Modell. Simul. Mater. Sci. Eng. 24, 085003 (2016).

    Article  ADS  Google Scholar 

  25. B. Dzepina, D. Balint, and D. Dini, J. Eur. Ceram. Soc. 39, 173–182 (2019).

    Article  CAS  Google Scholar 

  26. S. Nosewicz, J. Rojek, K. Wawrzyk, P. Kowalczyk, G. Maciejewski, and M. Maździarz, Comput. Mater. Sci. 156, 385–395 (2019).

    Article  Google Scholar 

  27. F. Raether, G. Seifert, and H. Ziebold, Adv. Theory Simul. 2, 1900048 (2019).

    Article  Google Scholar 

  28. H. Wang, M. Yu, Y. Wang, Z. Feng, Y. Wang, X. Lü, J. Zhu, Y. Ren, and C. Liang, J. Power. Sources 401, 111 (2018).

    Article  ADS  CAS  Google Scholar 

  29. J. Hötzer, M. Seiz, M. Kellner, W. Rheinheimer, and B. Nestler, Acta Mater. 164, 184 (2019).

    Article  ADS  Google Scholar 

  30. R. Termuhlen, X. Chatzistavrou, J.D. Nicholas, and H.-C. Yu, Comput. Mater. Sci. 186, 109963 (2021).

    Article  CAS  Google Scholar 

  31. K. Mori, Comput. Methods Appl. Mech. Eng. 195, 6737 (2006).

    Article  ADS  Google Scholar 

  32. V.C. Serrano, J.A. Escobar and G. Porras, In Materials Science Forum, (Trans Tech Publ: 2012), pp 1069–1074.

  33. K. Wawrzyk, P. Kowalczyk, S. Nosewicz and J. Rojek, In AIP Conference Proceedings, (AIP Publishing: 2018).

  34. M. Cronau, M. Szabo, C. Konig, T.B. Wassermann, and B. Roling, ACS Energy Lett. 6, 3072 (2021).

    Article  CAS  Google Scholar 

  35. K. Chockalingam, V. Kouznetsova, O. Van der Sluis, and M. Geers, Comput. Methods Appl. Mech. Eng. 312, 492 (2016).

    Article  ADS  Google Scholar 

  36. K.-J.R. Bathe, and K.-J.R. Bathe, Finite Element Procedures (Prentice Hall, Englewood Cliffs, 1996).

    Google Scholar 

  37. E.A.D.S. Neto, D. Peric, and D.R.J. Owen, Computational Methods for Plasticity: Theory and Applications (Wiley, Chichester, 2008).

    Book  Google Scholar 

  38. E. Gregorová, V. Nečina, S. Hříbalová, and W. Pabst, J. Eur. Ceram. Soc. 40, 2063 (2020).

    Article  Google Scholar 

  39. H. Wang, and M.-H. Hon, Ceram. Int. 25, 267 (1999).

    Article  CAS  Google Scholar 

  40. K. Hikima, M. Totani, S. Obokata, H. Muto, and A. Matsuda, ACS Appl. Energy Mater. 5, 2349 (2022).

    Article  CAS  Google Scholar 

  41. A. Kato, M. Nose, M. Yamamoto, A. Sakuda, A. Hayashi, and M. Tatsumisago, J. Ceram. Soc. Jpn. 126, 719 (2018).

    Article  CAS  Google Scholar 

  42. Z. Deng, Z. Wang, I.-H. Chu, J. Luo, and S.P. Ong, J. Electrochem. Soc. 163, A67 (2015).

    Article  Google Scholar 

  43. E. Olevsky and R.M. German, Materials Research in Microgravity 2012 (2012).

  44. X. Zhang, W. Shyy, and A.M. Sastry, J. Electrochem. Soc. 154, A910 (2007).

    Article  CAS  Google Scholar 

  45. A.A. Hubaud, D.J. Schroeder, B.J. Ingram, J.S. Okasinski, and J.T. Vaughey, J. Alloy. Compd. 644, 804 (2015).

    Article  CAS  Google Scholar 

  46. B. Ghate, D. Hasselman, and R.M. Spriggs, Ceramurg. Int. 1, 105 (1975).

    Article  CAS  Google Scholar 

  47. H.-K. Tian, Z. Liu, Y. Ji, L.-Q. Chen, and Y. Qi, Chem. Mater. 31, 7351 (2019).

    Article  CAS  Google Scholar 

  48. S. Biswas, D. Schwen, J. Singh, and V. Tomar, Extreme Mech. Lett. 7, 78 (2016).

    Article  Google Scholar 

  49. S. Yu, R.D. Schmidt, R. Garcia-Mendez, E. Herbert, N.J. Dudney, J.B. Wolfenstine, J. Sakamoto, and D.J. Siegel, Chem. Mater. 28, 197 (2016).

    Article  CAS  Google Scholar 

  50. J. Wolfenstine, J.L. Allen, J. Sakamoto, D.J. Siegel, and H. Choe, Ionics 24, 1271 (2018).

    Article  CAS  Google Scholar 

  51. L.E. Camacho-Forero, and P.B. Balbuena, J. Power. Sources 396, 782 (2018).

    Article  ADS  CAS  Google Scholar 

  52. W.H. Rhodes, J. Am. Ceram. Soc. 64, 19 (1981).

    Article  CAS  Google Scholar 

  53. C. Wang, W. Ping, Q. Bai, H. Cui, R. Hensleigh, R. Wang, A.H. Brozena, Z. Xu, J. Dai, and Y. Pei, Science 368, 521 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. V. Ivannikov, F. Thomsen, T. Ebel, and R. Willumeit-Römer, Modell. Simul. Mater. Sci. Eng. 29, 075008 (2021).

    Article  ADS  CAS  Google Scholar 

  55. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, J. Mater. Sci. 41, 763 (2006).

    Article  ADS  CAS  Google Scholar 

  56. S. Stark and P. Neumeister, Mech. Mater. 122, 26 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Vehicle Technologies Office (VTO), Department of Energy (DOE), USA. Argonne National Laboratory is operated for DOE Office of Science by UChicago Argonne, LLC, under the contract number DE-AC02-06CH11357. The authors also acknowledge the computing resources provided by the Laboratory Computing Resource Center (LCRC) at Argonne National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallab Barai.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Evolution of the particle microstructure of a sulfide-based solid electrolyte during densification at 500 MPa under room temperature conditions is provided in Fig.

Fig. 6
figure 6

Evolution of particle microstructure during the densification of sulfide-based soft solid electrolytes under 500 MPa at room temperature conditions. (a) Initial microstructure, microstructures after (b) 3.33 min, (c) 6.66 min, (d) 10 min, (e) 13.33 min, and (f) 16.66 min. The corresponding relative densities are provided by the blue diamonds in Fig. 1a in the main text (Color figure online).

6. The initial microstructure, as shown in Fig. 6a, demonstrates relative densities around 55% and average particle size around 5 µm. During pressure-induced densification under 500 MPa, the relative density of the microstructure increases to 97% through the reorganization and creep deformation mechanisms, which is shown in a step-by-step fashion in Fig. 6b–f. No significant grain growth is observed during the entire densification at room temperature, except the removal of some very small sized grains that eventually merge with the adjacent larger particles.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barai, P., Kinnibrugh, T., Wolfman, M. et al. Phase Field Modeling of Pressure Induced Densification in Solid Electrolytes. JOM 76, 1180–1191 (2024). https://doi.org/10.1007/s11837-023-06331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06331-2

Navigation