Skip to main content
Log in

Microstructure, Particle Size, and Magnetic Property of Fe-6.5 wt.% Si Nanocrystalline Alloys Prepared by Mechanical Alloying

  • Electrical Steels
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Fe-6.5 wt.% Si nanocrystalline alloys with good magnetic softness were prepared by mechanical alloying at various milling times (0–12 h) via a high-energy ball mill. Elemental iron and silicon powders were used as raw materials. Structural evolution, particle size distribution, and magnetic properties were investigated for as-milled Fe-Si alloy powders. During the alloying process, Si atoms dissolve substitutionally into α-Fe lattice, causing a decrease of lattice parameter with the milling time. A single α-(Fe,Si) solid-solution phase with grain size of ~ 10 nm is obtained, and no ordered phases (B2 or DO3) are observed. Ball-milling effectively reduces particle size of the alloy powders from 64 μm to 30 μm, and exhibits a controlled distribution of the particle size. A transition in the dominant factor and a deviation from the sixth power law on grain size are confirmed in the coercivity of these Fe-Si alloy powders. Good magnetic softness, with a saturation magnetization of ~ 198 Am2/kg and coercivity of ~ 20 A/m, has been achieved. This study validates that mechanical alloying is an effective way to produce single-phase BCC Fe-6.5 wt.% Si alloy powders for applications with magnetic powder cores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Krings, A. Boglietti, A. Cavagnino, and S. Sprague, IEEE Trans. Ind. Elctron. 64, 2405 https://doi.org/10.1109/TIE.2016.2613844 (2017).

    Article  Google Scholar 

  2. J.M. Silveyra, E. Ferrara, D.L. Huber, and T.C. Monson, Science 362, 6413 https://doi.org/10.1126/science.aao0195 (2018).

    Article  CAS  Google Scholar 

  3. O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, and J.P. Liu, Adv. Mater. 23, 821 https://doi.org/10.1002/adma.201002180 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. A.S. Inoue and N. Nishiyama, MRS Bull. 32, 651 https://doi.org/10.1557/MRS2007.128 (2007).

    Article  CAS  Google Scholar 

  5. O.A. Tretiakov, D.R. Clarke, G. Chern, Y.B. Bazaliy, and O. Tchernyshyov, Phys. Rev. Lett. 100, 127204 https://doi.org/10.1103/PhysRevLett.100.127204 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. R.C. Ohandley, Modern Magnetic Materials: Principles and Applications (Wiley, New York, 2000), pp338–347.

    Google Scholar 

  7. M.A. Willard, M. Daniil, and K.E. Kniping, Scr. Mater. 67, 554 https://doi.org/10.1016/J.SCRIPTAMAT.2011.12.043 (2012).

    Article  CAS  Google Scholar 

  8. G.D. Herzer, Acta Mater. 61, 718 https://doi.org/10.1016/j.actamat.2012.10.040 (2013).

    Article  ADS  CAS  Google Scholar 

  9. H. Fu, Y. Mo, Z. Zhang, and J. Xie, Mater. Sci. Eng. 656, 90 https://doi.org/10.1016/J.MSEA.2016.01.036 (2016).

    Article  CAS  Google Scholar 

  10. M.F. Littmann, IEEE Trans. Magn. 7, 48 https://doi.org/10.1109/TMAG.1971.1066998 (1971).

    Article  ADS  CAS  Google Scholar 

  11. W.J. Yuan, R. Li, Q. Shen, and L. Zhang, Mater Charact 58, 376 https://doi.org/10.1016/J.MATCHAR.2006.06.003 (2007).

    Article  CAS  Google Scholar 

  12. Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64, 6044 https://doi.org/10.1063/1.342149 (1988).

    Article  ADS  CAS  Google Scholar 

  13. G. Ouyang, X. Chen, Y. Liang, C.R. Macziewski, and J. Cui, J. Magn. Magn. Mater. 481, 234 https://doi.org/10.1016/J.JMMM.2019.02.089 (2019).

    Article  ADS  CAS  Google Scholar 

  14. P.R. Swann, L. Granas, and B. Lehtinen, Metal Sci. 9, 90 https://doi.org/10.1179/030634575790445279 (1975).

    Article  CAS  Google Scholar 

  15. Z. Bensebaa, B. Bouzabata, and A. Otmani, J. Alloys Compd. 469, 24 https://doi.org/10.1016/J.JALLCOM.2008.01.151 (2009).

    Article  CAS  Google Scholar 

  16. C.C. Lima, M.C.A. da Silva, M.D.C. Sobral, R.E. Coelho, and C. Bolfarini, J. Alloys Compd. 586, S314 https://doi.org/10.1016/J.JALLCOM.2012.09.074 (2014).

    Article  CAS  Google Scholar 

  17. P. Arató, I. Bóc, and T. Gróf, J. Magn. Magn. Mater. 41, 53 https://doi.org/10.1016/0304-8853(84)90135-5 (1984).

    Article  ADS  Google Scholar 

  18. B. Viala, J. Degauque, M. Fagot, M. Baricco, E. Ferrara, and F. Fiorillo, Mater. Sci. Eng. A 212, 62 https://doi.org/10.1016/0921-5093(96)10188-X (1996).

    Article  Google Scholar 

  19. S. Cui, G. Ouyang, T. Ma, C.R. Macziewski, V.I. Levitas, L. Zhou, M.J. Kramer, and J. Cui, J. Alloys Compd. 771, 643 https://doi.org/10.1016/J.JALLCOM.2018.08.293 (2019).

    Article  CAS  Google Scholar 

  20. J.S. Shin, J.S. Bae, H.J. Kim, H.M. Lee, T.D. Lee, E.J. Lavernia, and Z.H. Lee, Mater. Sci. Eng. A 407, 282 https://doi.org/10.1016/J.MSEA.2005.07.012 (2005).

    Article  Google Scholar 

  21. H. Yu, W. Yu, and X. Bi, J. Alloys Compd. 634, 83 https://doi.org/10.1016/J.JALLCOM.2015.01.156 (2015).

    Article  CAS  Google Scholar 

  22. M. Li, R. Birringer, W.L. Johnson, and R.D. Shull, Nanostruct. Mater. 3, 407 https://doi.org/10.1016/0965-9773(93)90106-L (1993).

    Article  Google Scholar 

  23. C. Stanciu, F. Popa, I. Chicinas, and O. Isnard, Adv Electron Forum. 13, 109 https://doi.org/10.4028/www.scientific.net/AEF.13.109 (2015).

    Article  Google Scholar 

  24. T. Clark and S.N. Mathaudhu, J. Magn. Magn. Mater. 484, 350 https://doi.org/10.1016/J.JMMM.2019.03.070 (2019).

    Article  ADS  CAS  Google Scholar 

  25. C. Suryanarayana, Prog. Mater. Sci. 46, 1 https://doi.org/10.1016/S0079-6425(99)00010-9 (2001).

    Article  CAS  Google Scholar 

  26. W. Shen, F. Wang, D. Boroyevich, and C.W. Tipton, IEEE Trans. Power Electron. 23, 475 https://doi.org/10.1109/TPEL.2007.911881 (2007).

    Article  ADS  Google Scholar 

  27. M. Abdellaoui, T. Barradi, and E. Gaffet, J. Alloys Compd. 198, 155 https://doi.org/10.1016/0925-8388(93)90159-K (1993).

    Article  CAS  Google Scholar 

  28. H. Shokrollahi and K. Janghorban, J. Mater. Process. Technol. 189, 1 https://doi.org/10.1016/j.jmatprotec.2007.02.034 (2007).

    Article  CAS  Google Scholar 

  29. Origin®. https://www.origin.com/hkg/en-us/. Accessed June 9th 2023

  30. C. Groschner, S. Lan, A. Wiase, A. Leary, M.S. Lucas, C. Park, D.E. Laughlin, M. Diaz-Michelena, and M.E. McHenry, IEEE Trans. Magn. 49, 4273 https://doi.org/10.1109/TMAG.2013.2250928 (2013).

    Article  ADS  CAS  Google Scholar 

  31. U. Holzwarth and N. Gibson, Nat. Nanotechnol. 6, 534 https://doi.org/10.1038/nnano.2011.145 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. J.B. Nelson and D.P. Riley, Proc. Phys. Soc. 57, 160 https://doi.org/10.1088/0959-5309/57/3/302 (1945).

    Article  ADS  CAS  Google Scholar 

  33. J.B. Nelson and D.P. Riley, Proc. Phys. Soc. 57, 477 https://doi.org/10.1088/0959-5309/57/6/303 (1945).

    Article  ADS  CAS  Google Scholar 

  34. G.K. Williamson and W.H. Hall, Acta Metall. 1, 22 https://doi.org/10.1016/0001-6160(53)90006-6 (1953).

    Article  CAS  Google Scholar 

  35. F. González and Y. Houbaert, Rev. Metal. 49, 178 https://doi.org/10.3989/revmetalm.1223 (2013).

    Article  CAS  Google Scholar 

  36. R.M. Bozorth, Ferromagnetism (D. Van Nostrand, New Jersey, 1951), pp74–75.

    Google Scholar 

  37. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Massachusetts, 1956), p395.

    Google Scholar 

  38. G.D. Herzer, IEEE Trans. Magn. 26, 1397 https://doi.org/10.1109/20.104389 (1990).

    Article  ADS  CAS  Google Scholar 

  39. B. Dong, J. Healy, S. Lan, M. Daniil, and M.A. Willard, AIP Adv. 8, 056124 https://doi.org/10.1063/1.5007248 (2018).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Science and Technology Research Program of Chongqing Municipal Education Commission [Grant Number KJQN202000738]; the Graduate Research and Innovation Project of Chongqing Jiaotong University [Grant Number 2022S0058]; and the Students Venture Fund of Chongqing Jiaotong University [Grant Number CY202139].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Lan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Chen, Y., Lan, C. et al. Microstructure, Particle Size, and Magnetic Property of Fe-6.5 wt.% Si Nanocrystalline Alloys Prepared by Mechanical Alloying. JOM 76, 1066–1075 (2024). https://doi.org/10.1007/s11837-023-06300-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06300-9

Navigation