Skip to main content
Log in

The Effect of B and Si Additions on the Structural and Magnetic Behavior of Fe-Co-Ni Alloy Prepared by High-energy Mechanical Milling

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Nanocrystalline Fe50Co25Ni15X10 (X = Bamorphous, Bcrystalline, and Si) powdered alloys were prepared by mechanical alloying process. Morphological, microstructural, and structural characterizations of the powders milled several times were investigated by scanning electron microscopy and X-ray diffraction. The final crystallographic state strongly depends on the chemical composition and the grinding time; it can be single-phase or two-phase. The crystallite size reduction down the nanometer scale is accompanied by the introduction of high level of lattice strains. The dissolution of Co, Ni, B (amorphous and crystalline), and Si into the α-Fe lattice leads to the formation of highly disordered Fe-based solid solutions. Coercivity (Hc) and the saturation magnetization (Ms) of alloyed powders were measured at room temperature by a vibration sample magnetization. The magnetic measurements show a contrasting Ms and (Hc) in all alloy compositions. Conclusively, soft magnetic properties of nanocrystalline alloys are related to various factors such as metalloid addition, formed phases, and chemical compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001)

    Article  Google Scholar 

  2. Koch, C.C.: Top-down synthesis of nanostructured materials: mechanical and thermal processing methods. Rev. Adv. Mater. Sci. 5, 91–99 (2003)

    Google Scholar 

  3. Mancier, V., Delplancke, J.L., Delwiche, J., Hubin-Franskin, M.J., Piquer, C., Rebbouh, L., Grandjean, F.: Morphologic, magnetic, and Mossbauer spectral properties of Fe75Co25 nanoparticles prepared by ultrasound-assisted electrochemistry. J. Magn. Magn. Mater. 281, 27–35 (2004)

    Article  ADS  Google Scholar 

  4. Zhu, J.G.: New heights for hard disk drives. Mater. Today. 6, 22–23 (2003)

    Article  Google Scholar 

  5. Sharifati, A., Sharafi, S.: Structure and magnetic properties of mechanically alloyed (Fe70Co30)91Cu9 powder. Mater. Des. 36, 35–40 (2012)

    Article  Google Scholar 

  6. Chitsazan, B., Shokrollahi, H., Behvandi, A., Mirzaee, O.: Characterization and magnetic coercivity of nanostructured (Fe50Co50)100-xVx= 0,2,4 powders containing a small amount of Co3V intermetallic obtained by mechanical alloying. Powder Technol. 214, 105–110 (2011)

    Article  Google Scholar 

  7. Yuping, D., Yahong, Z., Tongmin, W., Shuchao, G., Xin, L., Xingjun, L.: Evolution study of microstructure and electromagnetic behaviors of Fe–Co–Ni alloy with mechanical alloying. Mater. Sci. Eng. B. 185, 86–93 (2014)

    Article  Google Scholar 

  8. Baghbaderani, H.A., Sharafi, S., Chermahini, M.D.: Investigation of nanostructure formation mechanism and magnetic properties in Fe45Co45Ni10 system synthesized by mechanical alloying. Powder Technol. 230, 241–246 (2012)

    Article  Google Scholar 

  9. Moumeni, H., Nemamcha, A., Alleg, S., Grenèche, J.M.: Hyperfine interactions and structural features of Fe-44Co-6Mo (wt.%) nanostructured powders. Mater. Chem. Phys. 138, 209–214 (2013)

    Article  Google Scholar 

  10. Loureiro, J.M., Costa, B.F.O., Malaman, B., Le Caër, G., Das, S., Amaral, V.S.: Formation stages of bcc (Fe44Co44)Sn12 extended solid solution by mechanical alloying. J. Alloys Compd. 25, 211–218 (2014)

    Google Scholar 

  11. Lu, Z., Li, H., Lei, Z., Chang, C., Wang, X., Lu, Z.: The effects of metalloid elements on the nanocrystallization behavior and soft magnetic properties of FeCBSiPCu amorphous alloys. Metals. 8, 283 (2018)

    Article  Google Scholar 

  12. Pang, L., Kumar, K.S.: Mater. Sci. Eng. A. 258, 161–166 (1998)

    Article  Google Scholar 

  13. Kane, S.N., Gupta, A., Gercsi, Z., Mazaleyrat, F., Varga, L.K.: Magn. Magn. Mater. 292, 447 (2005)

    Article  ADS  Google Scholar 

  14. Liu, B., Zheng, Y.F., Ruan, L.: Mater. Lett. 65(3), 540–543 (2011)

    Article  Google Scholar 

  15. Filho, A.F., Bolfarini, C., Xu, Y., Kiminami, C.S.: Scr. Mater. 42, 213 (2000)

    Article  Google Scholar 

  16. Yapp, R., Watts, B.E., Leccabue, F.: J. Magn. Magn. Mater. 215, 300 (2000)

    Article  ADS  Google Scholar 

  17. Lutterotti, L.: MAUD CPD Newsletter. IUCr. 24, (2000)

  18. Cardellini, F., Mazzone, G.: Thermal and structural study of the h.c.p.-to-f.c.c. transformation in cobalt. Philos. Mag. 67A(6), 1289–1300 (1993)

    Article  ADS  Google Scholar 

  19. Sort, J., Nogues, J., Surinach, S., Munoz, J.S., Baro, M.D.: Correlation between stacking fault formation, allotropic phase transformations and magnetic properties of ball-milled cobalt. Mater. Sci. Eng. A. 375–377, 869–873 (2004)

    Article  Google Scholar 

  20. Shokrallahi, H.: The magnetic and structural properties of the most important alloys of iron produced by mechanical alloying. Mater. Des. 30, 3374 (2009)

    Article  Google Scholar 

  21. Long, J., Ohodnicki, P.R., Laughlin, D.E., McHenry, M.E.: Structural studies of secondary crystallization products of the Fe23B6-type in a nanocrystalline FeCoB-based alloy. J. Appl. Phys. 101, 09N114 (2007)

    Article  Google Scholar 

  22. Souilah, S., Alleg, S., Djebbari, C., Bensalema, R., Sunol, J.J.: Magnetic and microstructural properties of the mechanically alloyed Fe57Co21Nb7B15 powder mixture. Mater. Chem. Phys. 132, 766–772 (2012)

    Article  Google Scholar 

  23. Bensalem, R., Alleg, S., Younes, A., Souilah, S., Azzaza, S., Sunol, J.J.: Al-Azhar Univ. Eng. J. JAUES. 3(13), 83–92 (2008)

    Google Scholar 

  24. Herzer, G.: Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 13977 (1990)

    Article  Google Scholar 

  25. Delshad Chermahini, M., Sharafi, S., Shokrollahi, H., Zandrahimi, M., Shafyei, A.: The evolution of heating rate on the microstructural and magnetic properties of milled nanostructured Fe1-xCox(x = 0.2, 0.3, 0.4, 0.5 and 0.7) powder. J. Alloys Compd. 484, 54–58 (2009)

    Article  Google Scholar 

  26. Luborsky, F.E.: Development of elongated particle magnets. J. Appl. Phys. 32, S171 (1961)

    Article  ADS  Google Scholar 

  27. Kneller, E.: Fine particle theory. In: Berkowitz, A.E., Kneller, E. (eds.) Magnetism and Metallurgy, vol. 1, pp. 365–471. Academic Press, New York (1969)

    Google Scholar 

  28. Abdellaoui, M., Djega-Mariadassou, C., Gaffet, E.: Structural study of Fe-Si nanostructured materials. J. Alloys Compd. 259, 241 (1997)

    Article  Google Scholar 

  29. Bensebaa, N., Loudjani, N., Alleg, S., Dekhil, L., Suñol, J.J., Al Sae, M., Bououdina, M.: XRD analysis and magnetic properties of nanocrystalline Ni20Co80 alloys. J. Magn. Magn. Mater. 323, 3063–3070 (2011)

    Article  ADS  Google Scholar 

Download references

Funding

Financial support from Spanish MAT2016-75967-P is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Khitouni.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khitouni, N., Daly, R., Escoda, L. et al. The Effect of B and Si Additions on the Structural and Magnetic Behavior of Fe-Co-Ni Alloy Prepared by High-energy Mechanical Milling. J Supercond Nov Magn 33, 2727–2735 (2020). https://doi.org/10.1007/s10948-020-05500-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05500-7

Keywords

Navigation