Skip to main content
Log in

Recovery of Alumina and Alkali from Red Mud Using NaFeO2 (NF) as an Additive in the Hydrothermal Process

  • Recent Developments on Metals and Energy Extraction from Waste Streams
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Red mud is an alkaline solid residue produced from the extraction of alumina from bauxite. However, the remaining alumina in red mud will cause secondary loss of aluminum resources. In the Bayer process, high alkalinity leads to severe environmental pollution issues and safety hazards. In this study, alkali and alumina were simultaneously recovered by using NaFeO2 (NF) as an additive in a hydrothermal process. Harmless secondary red mud with low Na2O content was obtained, avoiding the alkalinity pollution compared with conventional alumina extraction process. The influence of hydrothermal conditions on the extraction rate of alkali and alumina in red mud was also systematically studied. The chemical composition and microstructure of red mud before and after the reaction were studied using various characterization techniques such as XRF, XRD, and SEM. The results show that the A/S (molar ratio of Al2O3 to SiO2) in the secondary red mud is reduced to 0.21, the Na2O content is 0.43%, and the recovery rate of alumina is 80% with NF as additive. The product is hydroandradite (Ca3(FexAl1−x)2(SiO4)y(OH)9−y) with less aluminum content and hematite. This work will provide a theoretical basis for achieving secondary resource recovery and handling the environmental pollution issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.A. Khairul, J. Zanganeh, and B. Moghtaderi, Resour. Conserv. Recycl. 141, 483 https://doi.org/10.1016/j.resconrec.2018.11.006 (2019).

    Article  Google Scholar 

  2. Y. Zhao, J. Wang, Z.K. Luan, X.J. Peng, Z. Liang, and L. Shi, J. Hazard. Mater. 165, 1193 https://doi.org/10.1016/j.jhazmat.2008.10.114 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. N. Deihimi, M. Irannajad, and B. Rezai, J. Environ. Manag. 206, 266 https://doi.org/10.1016/j.jenvman.2017.10.037 (2018).

    Article  CAS  Google Scholar 

  4. C.R. Borra, Y. Pontikes, K. Binnemans, and T.V. Gerven, Miner. Eng. 76, 20 https://doi.org/10.1016/j.mineng.2015.01.005 (2015).

    Article  CAS  Google Scholar 

  5. X.Y. Liu, K.L. Feilberg, W. Yan, E.H. Stenby, and E. Thormann, J. Dispers. Sci. Technol. 40, 1611 https://doi.org/10.1080/01932691.2018.1523012 (2019).

    Article  CAS  Google Scholar 

  6. X. Liu, P. Gao, S. Yuan, Y. Lv, and Y.X. Han, Miner. Eng. 157, 106553 https://doi.org/10.1016/j.mineng.2020.106553 (2020).

    Article  CAS  Google Scholar 

  7. M. Anirudh, K.S. Rekha, C. Venkatesh, and R. Nerella, Mater. Today Proc. 43, 1587 https://doi.org/10.1016/j.matpr.2020.09.504 (2021).

    Article  Google Scholar 

  8. M. Gautam, B. Pandey, and M. Agrawal, Ecol. Ind. 88, 88 https://doi.org/10.1016/j.ecolind.2017.12.062 (2018).

    Article  CAS  Google Scholar 

  9. S.G. Xue, Z. Liu, J.R. Fan, R. Xue, Y. Guo, W. Chen, W. Hartley, and F. Zhu, Environ. Pollut. 292, 118326 https://doi.org/10.1016/j.envpol.2021.118326 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. S. Song, N. Zhang, J.B. Yuan, and Y.H. Zhang, J. Build. Eng. 43, 103222 https://doi.org/10.1016/j.jobe.2021.103222 (2021).

    Article  Google Scholar 

  11. T. Hertel, A. Van Den Bulck, S. Onisei, P.P. Sivakumar, and Y. Pontikes, Cem. Concr. Res. 145, 106463 https://doi.org/10.1016/j.cemconres.2021.106463 (2021).

    Article  CAS  Google Scholar 

  12. N. Ye, J.K. Yang, X.Y. Ke, J. Zhu, Y.L. Li, C. Xiang, H.B. Wang, L. Li, and B. Xiao, J. Am. Ceram. Soc. 97, 1652 https://doi.org/10.1111/jace.12840 (2014).

    Article  CAS  Google Scholar 

  13. J. Carneiro, D.M. Tobaldi, M.N. Capela, R.M. Navais, M.P. Seabra, and J.A. Labrincha, Waste Manag. 80, 371 https://doi.org/10.1016/j.wasman.2018.09.032 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. T.Y. Liu, X.Y. Li, L.M. Guan, P. Liu, T. Wu, Z. Li, and A.X. Lu, Ceram. Int. 42, 1733 https://doi.org/10.1016/j.ceramint.2015.09.131 (2016).

    Article  CAS  Google Scholar 

  15. K. Kaya and S. Soyer-Uzun, Ceram. Int. 42, 7406 https://doi.org/10.1016/j.ceramint.2016.01.144 (2016).

    Article  CAS  Google Scholar 

  16. G.T. Wei, L.H. Shao, J.H. Mo, Z.M. Li, and L.Y. Zhang, Environ. Sci. Pollut. Res. 24, 15067 https://doi.org/10.1007/s11356-017-9126-y (2017).

    Article  CAS  Google Scholar 

  17. Y.J. Liu and R. Naidu, Waste Manag. 34, 2662 https://doi.org/10.1016/j.wasman.2014.09.003 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Z.B. Liu and H.X. Li, Hydrometallurgy 155, 29 https://doi.org/10.1016/j.hydromet.2015.03.018 (2015).

    Article  CAS  Google Scholar 

  19. S. Rai, M.T. Nimje, M.J. Chaddha, S. Modak, K.R. Rao, and A. Agnihotri, Miner. Eng. 134, 222 https://doi.org/10.1016/j.mineng.2019.02.018 (2019).

    Article  CAS  Google Scholar 

  20. X.B. Zhu, W. Li, and X.M. Guan, Trans. Nonferrous Met. Soc. China 25, 3139 https://doi.org/10.1016/S1003-6326(15)63944-9 (2015).

    Article  CAS  Google Scholar 

  21. B. Xue, B.T. Wei, L.X. Ruan, F.F. Li, Y.S. Jiang, W.J. Tian, B. Su, and L.M. Zhou, Hydrometallurgy 186, 91 https://doi.org/10.1016/j.hydromet.2019.04.005 (2019).

    Article  CAS  Google Scholar 

  22. D.R. Zhang, H.R. Chen, Z.Y. Nie, J.L. Xia, E.P. Li, X.L. Fan, and L. Zheng, Chem. Eng. J. 401, 125914 https://doi.org/10.1016/j.cej.2020.125914 (2020).

    Article  CAS  Google Scholar 

  23. X.B. Zhu, W. Li, and X.M. Guan, J. Hazard. Mater. 286, 85 https://doi.org/10.1016/j.jhazmat.2014.12.048 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. H. Peng, T. Kim, and J. Vaughan, Ind. Eng. Chem. Res. 59, 8174 https://doi.org/10.1021/acs.iecr.0c00423 (2020).

    Article  CAS  Google Scholar 

  25. L.W. Cheng, Y.L.B. Wang, T.G. Qi, G.H. Hua, Q.S. Zhou, Z.H. Peng, and X.B. Li, J. Sustain. Metall. 8, 541 https://doi.org/10.1007/s40831-022-00515-x (2022).

    Article  Google Scholar 

  26. X.L. Pan, H.F. Wu, J.L. Liu, Q.W. Liu, and H.Y. Yu, Hydrometallurgy 203, 105695 https://doi.org/10.1016/j.hydromet.2021.105695 (2021).

    Article  CAS  Google Scholar 

  27. X.J. Wang, Y.Y. Wang, H. Jin, J.D. Li, and X.M. Wang, Bull. Environ. Contam. Toxicol. 109, 186 https://doi.org/10.1007/s00128-022-03492-9 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. B.G. Xu and P. Smith, Hydrometallurgy 129, 26 https://doi.org/10.1016/j.hydromet.2012.08.013 (2012).

    Article  CAS  Google Scholar 

  29. R. Zhang, S.L. Zheng, S.H. Ma, and Y. Zhang, J. Hazard. Mater. 189, 827 https://doi.org/10.1016/j.jhazmat.2011.03.004 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. R.B. Li, X.L. Li, D.X. Wang, Y. Liu, and T.A. Zhang, Powder Technol. 333, 277 https://doi.org/10.1016/j.powtec.2018.04.031 (2018).

    Article  CAS  Google Scholar 

  31. R.B. Li, T.A. Zhang, Y. Liu, G.Z. Lv, and L.Q. Xie, J. Hazard. Mater. 316, 94 https://doi.org/10.1016/j.jhazmat.2016.04.072 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. B. Whittington and T. Fallows, Hydrometallurgy 45, 289 https://doi.org/10.1016/S0304-386X(96)00085-0 (1997).

    Article  CAS  Google Scholar 

  33. J.M. Rivas-Mercury, P. Pena, A.H. de Aza, X. Turrillas, I. Sobrados, and J. Sanz, Acta Mater. 55, 1183 https://doi.org/10.1016/j.actamat.2006.09.032 (2007).

    Article  ADS  CAS  Google Scholar 

  34. D.E. Giles, I.M. Ritchie, and B.A. Xu, Hydrometallurgy 32, 119 https://doi.org/10.1016/0304-386X(93)90061-H (1993).

    Article  CAS  Google Scholar 

  35. R.B. Li, T.A. Zhang, Y. Liu, and S.B. Kuang, Metall. Mater. Trans. B 48, 1123 https://doi.org/10.1007/s11663-016-0911-7 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Liaoning Province Applied Basic Research Program Project 2023JH2/101300245, the National Natural Science Foundation of China (grant no. 51974188) and the Liaoning Revitalization Talents Program (no. XLYC2008014).

Funding

Liaoning Province Applied Basic Research Program Project (2023JH2/101300245), Liaoning Revitalization Talents Program (No. XLYC2008014), National Natural Science Foundation of China, Grant (No. 51974188).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laishi Li or Yusheng Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, J., Li, L., Wu, Y. et al. Recovery of Alumina and Alkali from Red Mud Using NaFeO2 (NF) as an Additive in the Hydrothermal Process. JOM 76, 1420–1428 (2024). https://doi.org/10.1007/s11837-023-06286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06286-4

Navigation