Skip to main content
Log in

Grain Structure Evolution in Fe-6Si During Directed Energy Deposition

  • Electrical Steels
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The purpose of this study is to explore the effect of additive manufacturing (AM) process variables on the grain structure of Fe-6Si, a soft-magnetic alloy used in electrical machine and grid applications. Samples were fabricated with laser engineered net shaping (LENS) with varying inter-pass timing and numbers of unidirectional passes. The results show that the grain structure was affected by both solidification and solid-state grain growth mechanisms. A model of the LENS process suggests that, although shorter inter-pass times encourage greater nucleation of new grains and therefore grain refinement during solidification, these conditions also help maintain high solid-state temperatures that allow for grain boundary motion to keep pace with the build rate. Grains formed under these conditions may span multiple layers, and the high-temperature gradient promotes directional growth. This new understanding of these microstructure evolution mechanisms will aid in using process conditions to control the competition between solidification and solid-state grain growth to create grain structures that may not be possible with conventional processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.M. Bozorth, Ferromagnetism (IEEE Press, New York, 1993).

    Book  Google Scholar 

  2. M. Garibaldi, I. Ashcroft, M. Simonelli, and R. Hague, Acta Mater. 110, 207 https://doi.org/10.1016/j.actamat.2016.03.037 (2016).

    Article  ADS  CAS  Google Scholar 

  3. A. Plotkowski, K. Carver, F. List, J. Pries, Z. Li, A.M. Rossy, and D. Leonard, Mater. Des. 194, 108894 (2020).

    Article  CAS  Google Scholar 

  4. T.F. Babuska, M.A. Wilson, K.L. Johnson, S.R. Whetten, J.F. Curry, J.M. Rodelas, C. Atkinson, P. Lu, M. Chandross, B.A. Krick, J.R. Michael, N. Argibay, D.F. Susan, and A.B. Kustas, Acta Mater. 180, 149 https://doi.org/10.1016/j.actamat.2019.08.044 (2019).

    Article  ADS  CAS  Google Scholar 

  5. M. Garibaldi, I. Ashcroft, J.N. Lemke, M. Simonelli, and R. Hague, Scripta Mater. 142, 121 https://doi.org/10.1016/j.scriptamat.2017.08.042 (2018).

    Article  CAS  Google Scholar 

  6. A.B. Kustas, D.F. Susan, K.L. Johnson, S.R. Whetten, M.A. Rodriguez, D.J. Dagel, J.R. Michael, D.M. Keicher, and N. Argibay, Addit. Manuf. 21, 41 https://doi.org/10.1016/j.addma.2018.02.006 (2018).

    Article  CAS  Google Scholar 

  7. C.V. Mikler, V. Chaudhary, V. Soni, B. Gwalani, R.V. Ramanujan, and R. Banerjee, Mater. Lett. 199, 88 https://doi.org/10.1016/j.matlet.2017.04.054 (2017).

    Article  CAS  Google Scholar 

  8. C.V. Mikler, V. Chaudhary, T. Borkar, V. Soni, D. Choudhuri, R.V. Ramanujan, and R. Banerjee, Mater. Lett. 192, 9 https://doi.org/10.1016/j.matlet.2017.01.059 (2017).

    Article  CAS  Google Scholar 

  9. A.B. Kustas, D.F. Susan, and T. Monson, JOM. https://doi.org/10.1007/s11837-021-05019-9 (2022).

    Article  Google Scholar 

  10. T. Pham, P. Kwon, and S. Foster, Energies 14, 1 (2021).

    Google Scholar 

  11. M. Garibaldi, C. Gerada, I. Ashcroft, and R. Hague, J. Mech. Des. Trans. ASME 141, 1 https://doi.org/10.1115/1.4042621 (2019).

    Article  Google Scholar 

  12. M. Haines, F. List, K. Carver, D. Leonard, A. Plotkowski, C. Fancher, R. Dehoff, and S. Babu, Addit. Manuf. 50, 102578 https://doi.org/10.1016/j.addma.2021.102578 (2022).

    Article  CAS  Google Scholar 

  13. G.P. Dinda, A.K. Dasgupta, and J. Mazumder, Scripta Mater. 67, 503 https://doi.org/10.1016/j.scriptamat.2012.06.014 (2012).

    Article  CAS  Google Scholar 

  14. R.R. Dehoff, M.M. Kirka, W.J. Sames, H. Bilheux, A.S. Tremsin, L.E. Lowe, and S.S. Babu, Mater. Sci. Technol. 31, 931 https://doi.org/10.1179/1743284714Y.0000000734 (2015).

    Article  ADS  CAS  Google Scholar 

  15. A. Plotkowski, J. Ferguson, B. Stump, W. Halsey, V. Paquit, C. Joslin, S.S. Babu, A. Marquez-Rossy, M.M. Kirka, and R.R. Dehoff, Addit. Manuf. 46, 102092 https://doi.org/10.1016/j.addma.2021.102092 (2021).

    Article  CAS  Google Scholar 

  16. D. Bürger, A.B. Parsa, M. Ramsperger, C. Körner, and G. Eggeler, Mater. Sci. Eng. A 762, 138098 https://doi.org/10.1016/j.msea.2019.138098 (2019).

    Article  CAS  Google Scholar 

  17. A. Shyam, A. Plotkowski, S. Bahl, K. Sisco, L.F. Allard, Y. Yang, J.A. Haynes, and R.R. Dehoff, Materialia 12, 100758 (2020).

    Article  CAS  Google Scholar 

  18. P. Kürnsteiner, M.B. Wilms, A. Weisheit, B. Gault, E.A. Jägle, and D. Raabe, Nature 582, 515 https://doi.org/10.1038/s41586-020-2409-3 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. C. Yang, and I. Baker, Int. Mater. Rev. 66, 256 https://doi.org/10.1080/09506608.2020.1819688 (2021).

    Article  CAS  Google Scholar 

  20. I. Baker, and J. Li, Acta Mater. 50, 805 (2002).

    Article  ADS  CAS  Google Scholar 

  21. W. Sha, and H.K.D.H. Bhadeshia, J. Mater. Sci. 30, 1439 (1995).

    Article  ADS  CAS  Google Scholar 

  22. R.L. Cairns, L.R. Curwick, and J.S. Benjamin, Metall. Trans. A 6, 179 (1975).

    Article  CAS  Google Scholar 

  23. A.W. Godfrey, and J.W. Martin, Mater. Sci. Eng. A 222, 91–100 (1997).

    Article  Google Scholar 

  24. Z.W. Zhang, G. Chen, and G.L. Chen, Acta Mater. 55, 5988 https://doi.org/10.1016/j.actamat.2007.07.019 (2007).

    Article  ADS  CAS  Google Scholar 

  25. Z. Zhang, G. Chen, H. Bei, F. Li, F. Ye, G. Chen, and C.-T. Liu, J. Mater. Res. 24, 2654 https://doi.org/10.1557/JMR.2009.0303 (2009).

    Article  ADS  CAS  Google Scholar 

  26. Z.W. Zhang, G. Chen, H. Bei, F. Ye, G.L. Chen, and C.T. Liu, Appl. Phys. Lett. 93, 191908 https://doi.org/10.1063/1.3026742 (2008).

    Article  ADS  CAS  Google Scholar 

  27. Z.W. Zhang, W.H. Wang, Y. Zou, I. Baker, D. Chen, and Y.F. Liang, J. Alloys Compd. 639, 40 https://doi.org/10.1016/j.jallcom.2015.03.129 (2015).

    Article  CAS  Google Scholar 

  28. H. Fu, Z. Zhang, Y. Jiang, and J. Xie, Mater. Lett. 65, 1416 https://doi.org/10.1016/j.matlet.2011.02.020 (2011).

    Article  CAS  Google Scholar 

  29. A.Y. Badmos, H.J. Frost, and I. Baker, Microstructural evolution during directional annealing. Acta Mater. 50, 3347–3359 (2002).

    Article  ADS  CAS  Google Scholar 

  30. A.Y. Badmos, H.J. Frost, and I. Baker, Acta Mater. 51, 2755 https://doi.org/10.1016/S1359-6454(03)00029-6 (2003).

    Article  ADS  CAS  Google Scholar 

  31. K.L. Johnson, T.M. Rodgers, O.D. Underwood, J.D. Madison, K.R. Ford, S.R. Whetten, D.J. Dagel, and J.E. Bishop, Comput. Mech. 61, 559 https://doi.org/10.1007/s00466-017-1516-y (2018).

    Article  Google Scholar 

  32. J. Coleman, K. Kincaid, G. L. Knapp, B. Stump, A. J. Plotkowski, ORNL/AdditiveFOAM: Release 1.0, (2023). https://doi.org/10.5281/ZENODO.8034098.

  33. H.G. Weller, G. Tabor, H. Jasak, and C. Fureby, Comput. Phys. 12, 620 https://doi.org/10.1063/1.168744 (1998).

    Article  ADS  Google Scholar 

  34. J. Coleman, A. Plotkowski, B. Stump, N. Raghavan, A.S. Sabau, M.J.M. Krane, J. Heigel, R.E. Ricker, L. Levine, and S.S. Babu, J. Heat Transf. 142, 122201 https://doi.org/10.1115/1.4047916 (2020).

    Article  CAS  Google Scholar 

  35. N. Saunders, U.K.Z. Guo, X. Li, A.P. Miodownik, and J.-P. Schillé, JOM 55, 60 https://doi.org/10.1007/s11837-003-0013-2 (2003).

    Article  ADS  CAS  Google Scholar 

  36. F. Lia, J. Park, J. Tressler, and R. Martukanitz, Addit. Manuf. 18, 31 https://doi.org/10.1016/j.addma.2017.08.012 (2017).

    Article  CAS  Google Scholar 

  37. M. Haines, A. Plotkowski, C.L. Frederick, E.J. Schwalbach, and S.S. Babu, Comput. Mater. Sci. 155, 340 https://doi.org/10.1016/j.commatsci.2018.08.064 (2018).

    Article  CAS  Google Scholar 

  38. J.D. Hunt, Mater. Sci. Eng. 65, 75 (1984).

    Article  ADS  CAS  Google Scholar 

  39. M. Gäumann, C. Bezençon, P. Canalis, and W. Kurz, Acta Mater. 49, 1051 https://doi.org/10.1016/S1359-6454(00)00367-0 (2001).

    Article  ADS  Google Scholar 

  40. X. Yang, F. Gao, F. Tang, X. Hao, and Z. Li, Metall. Mater. Trans. A 52, 4518 https://doi.org/10.1007/s11661-021-06405-3 (2021).

    Article  CAS  Google Scholar 

  41. A. Plotkowski, M.M. Kirka, and S.S. Babu, Addit. Manuf. 18, 256 https://doi.org/10.1016/j.addma.2017.10.017 (2017).

    Article  CAS  Google Scholar 

  42. S.S. Babu, J.W. Elmer, J.M. Vitek, and S.A. David, Acta Mater. 50, 4763–4781 https://doi.org/10.1016/S1359-6454(02)00317-8 (2002).

    Article  ADS  CAS  Google Scholar 

  43. M. Gäumann, R. Trivedi, and W. Kurz, Mater. Sci. Eng. A 226–228, 763 https://doi.org/10.1016/S0921-5093(97)80081-0 (1997).

    Article  Google Scholar 

  44. T. Kubota, M. Fujikura, and Y. Ushigami, J. Magn. Magn. Mater. 215, 69 https://doi.org/10.1016/S0304-8853(00)00069-X (2000).

    Article  ADS  Google Scholar 

  45. L. Chechik, N.A. Boone, L.R. Stanger, P. Honniball, F. Freeman, G. Baxter, J.R. Willmott, and I. Todd, Addit. Manuf. 38, 101806 https://doi.org/10.1016/j.addma.2020.101806 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Sarah Graham and Andres Marquez Rossy for sample preparation and electron microscopy, respectively. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Funding

Research was sponsored the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Materials and Manufacturing Technology Office. Support from the Sandia National Laboratories Laboratory Directed Research and Development (LDRD) program is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Plotkowski.

Ethics declarations

Conflict of interest

The authors certify they have no conflict of interest with regards to the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plotkowski, A., Coleman, J., Fancher, C.M. et al. Grain Structure Evolution in Fe-6Si During Directed Energy Deposition. JOM 76, 1031–1043 (2024). https://doi.org/10.1007/s11837-023-06279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06279-3

Navigation