Skip to main content
Log in

Characterization of Nickel in Chromite Beneficiation Tailings by Mineral Liberation Analysis and Its Recovery by H2SO4 Leaching Followed by Oxalic Acid Precipitation

  • Recent Developments on Metals and Energy Extraction from Waste Streams
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study investigated the recovery of nickel from tailings (0.2% Ni) obtained in a chromite beneficiation plant using H2SO4 leaching followed by oxalic acid precipitation. The tailings were characterized using mineral liberation analysis. Ni was found as Fe-Ni, Fe-Ni-Co sulfide minerals, which were encapsulated in serpentine, olivine, pyroxene and clinochlore. Liberated fine chromite minerals benefited from magnetic separation followed by Falcon concentrator. A chromite product with a grade > 37% was obtained. The effect of leaching conditions including acid concentration, temperature, time and solid-to-liquid ratio on the leaching behavior of Ni was investigated based on the Taguchi approach. It was possible to extract Ni with a rate of > 98% from the tailings using the following conditions: H2SO4 concentration of 3 M, solid-to-liquid ratio of 1:20 and ambient temperature for 2 h. Finally, Ni was precipitated as an oxalate form with a precipitation rate of 72%. It is believed that implementing additional purification methods like solvent extraction may be essential to obtain a high-purity nickel product from the leach solution of oxalate precipitate. Experimental results indicate that the tailings used in this study are a good alternative as Ni resource in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. European Commission, Study on the Critical Rwa Materials for the EU (Final Report) (2023).

  2. Energy, USA, Critical Materials Assessment (2023).

  3. T. Schmidt, M. Buchert, and L. Schebek, Resour. Conserv. Recycl. https://doi.org/10.1016/j.resconrec.2016.04.017 (2016).

    Article  Google Scholar 

  4. Z. Xi, Z. Wang, G. Yan, H. Guo, X. Li, Q. Hu, W. Peng, J. Wang, and G. Yan, Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2019.03.007 (2019).

    Article  Google Scholar 

  5. Ş Kaya and Y.A. Topkaya, in Rare earths industry. ed. by I.B.D. Lima, and W.L. Filho (Elsevier, Amsterdam, 2016), p. 171.

    Chapter  Google Scholar 

  6. J.A. Johnson, B.C. Cashmore, and R.J. Hockridge, Miner. Eng. https://doi.org/10.1016/j.mineng.2005.05.013 (2005).

    Article  Google Scholar 

  7. A.L.A. Santos, E.M.A. Becheleni, P.R.M. Viana, R.M. Papini, F.P.C. Silvas, and S.D.F. Rocha, Min. Metall. Explor. https://doi.org/10.1007/s42461-020-00310-w (2021).

    Article  Google Scholar 

  8. A. Oxley, M.E. Smith, and O. Caceres, Miner. Eng. https://doi.org/10.1016/j.mineng.2015.09.018 (2016).

    Article  Google Scholar 

  9. H.R. Watling, A.D. Elliot, H.M. Fletcher, D.J. Robinson, and D.M. Sully, Aust. J. Earth Sci. https://doi.org/10.1080/08120099.2011.602986 (2011).

    Article  Google Scholar 

  10. V. Bolaños-Benítez, E.D. Van Hullebusch, P.N.L. Lens, C. Quantin, J. Van de Vossenger, S. Subramanian, and Y. Sivry, Minerals. https://doi.org/10.3390/min8060261 (2018).

    Article  Google Scholar 

  11. S. Top, S. Kursunoglu, and Z.T. Ichlas, Can. Metall. Q. https://doi.org/10.1080/00084433.2020.1780560 (2020).

    Article  Google Scholar 

  12. J. MacCarthy, A. Nosrati, W. Skinner, and J. Addai-Mensah, Miner. Eng. https://doi.org/10.1016/j.mineng.2014.12.031 (2015).

    Article  Google Scholar 

  13. S. Kursunoglu and M. Kaya, Int. J. Miner. Process. https://doi.org/10.1016/j.minpro.2016.03.001 (2016).

    Article  Google Scholar 

  14. S. Kursunoglu, Z.T. Ichlas, and M. Kaya, Trans. Nonferrous Metals Soc. China. https://doi.org/10.1016/S1003-6326(18)64808-3 (2018).

    Article  Google Scholar 

  15. P.G. Tzeferis, Min. Metall. Explor. https://doi.org/10.1007/BF03403052 (1994).

    Article  Google Scholar 

  16. D. Pradhan, Mater. Today Proc. https://doi.org/10.1016/j.matpr.2022.06.129 (2022).

    Article  PubMed  Google Scholar 

  17. D. Pradhan, Lett. Appl. NanoBioSci. https://doi.org/10.33263/LIANBS101.18251832 (2021).

    Article  Google Scholar 

  18. D. Pradhan, D.J. Kim, G.R. Chaudhury, J.S. Sohn, and S.W. Lee, Mater. Trans. https://doi.org/10.2320/matertrans.M2009195 (2010).

    Article  Google Scholar 

  19. D.J. Kim, D. Pradhan, G.R. Chaudhury, J.G. Ahn, and S.W. Lee, Mater. Trans. https://doi.org/10.2320/matertrans.M2009125 (2009).

    Article  Google Scholar 

  20. S. Kursunoglu, Z.T. Ichlas, and M. Kaya, Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2017.01.001 (2017).

    Article  Google Scholar 

  21. J. Borda and R. Torres, S. Afr. J. Chem. Eng. https://doi.org/10.1016/j.sajce.2023.07.001 (2023).

    Article  Google Scholar 

  22. G. Prameswara, F.Y.P. Tyassena, M. Pasaribu, I. Trisnawati, and H.T.B.M. Petrus, Trans. Indian Inst. Metals. https://doi.org/10.1007/s12666-022-02858-1 (2023).

    Article  Google Scholar 

  23. B. Dong, Q. Tian, Z. Xu, X. Guo, Q. Wang, and D. Li, Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2023.106063 (2023).

    Article  Google Scholar 

  24. F. He, B. Ma, Z. Qiu, C. Wang, Y. Chen, and X. Hu, Miner. Eng. https://doi.org/10.1016/j.mineng.2023.108170 (2023).

    Article  Google Scholar 

  25. C. Mang, G. Li, Y. Chen, J. Luo, M. Rao, and T. Jiang, Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2023.106090 (2023).

    Article  Google Scholar 

  26. G.K. Das and J. Li, ACS Omega. https://doi.org/10.1021/acsomega.2c07595 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  27. K.K. Gupta, S. Haratian, O.V. Mishin, and R. Ambat, npj Mater. Degrad. https://doi.org/10.1038/s41529-023-00393-y (2023).

    Article  Google Scholar 

  28. V. Deniz, Inz. Miner. https://doi.org/10.29227/IM-2019-02-17 (2019).

    Article  Google Scholar 

  29. V. Ross, M. Ramonotsi, and G. Marape, Miner. Eng. https://doi.org/10.1016/j.mineng.2022.107801 (2022).

    Article  Google Scholar 

  30. W. Astuti, F. Nurjaman, F.R. Mufakhir, S. Sumardi, D. Avista, K.C. Wanta, and H.T.B.M. Petrus, Miner. Eng. https://doi.org/10.1016/j.mineng.2022.107982 (2023).

    Article  Google Scholar 

  31. M.F. Gulcan, B.D. Karahan, and O. Keles, J. Appl. Electrochem. https://doi.org/10.1007/s10800-023-01846-7 (2023).

    Article  Google Scholar 

  32. X. Wang, Y. Liu, and B. Liu, J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2023.132052 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. M.F. Ye and G.L. Wu, Mineralogical analysis of a chrome ore from South Africa, in Characterization of Minerals, Metals, and Materials 2018. TMS 2018. The Minerals, Metals & Materials Series. ed. by B. Li, et al. (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-72484-3_65.

    Chapter  Google Scholar 

  34. M.I. Pownceby, D.A. McCallum, and W.J. Bruckard, Minerals. https://doi.org/10.3390/min13030440 (2023).

    Article  Google Scholar 

  35. B. Lim, R.D. Alorro, M. Aylmore, and D. Grimsey, Miner. Eng. https://doi.org/10.1016/j.mineng.2023.108167 (2023).

    Article  Google Scholar 

  36. S.K. Tripathy, V. Singh, and Y. Ramamurthy, Int. J. Min. Eng. Miner. Process. 3, 101 (2012).

    Google Scholar 

  37. S.K. Tripathy, P.K. Banerjee, and N. Suresh, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-015-1064-4 (2015).

    Article  Google Scholar 

  38. R.K. Rath, B. Dey, M.K. Mohanta, L.K. Prusty, and R. Singh, Recovery of chromite values from tailings of cob plant using enhanced gravity concentrator. Paper presented at the International Seminar on Mineral Processing Technology 2017, 1–3 February 2017.

  39. M. Gharabaghia, M. Irannajadb, and A.R. Azadmehr, Chem. Eng. Res. Des. https://doi.org/10.1016/j.cherd.2012.11.016 (2013).

    Article  Google Scholar 

  40. S. Kursunoglu and M. Kaya, J. Miner. Process. 150, 1–8 https://doi.org/10.1016/j.minpro.2016.03.001 (2016).

    Article  CAS  Google Scholar 

  41. S. Surianti, K.C. Wanta, W. Astuti, F.R. Mufakhir, I. Perdana, and H.T. Petrus, J. Min. Sci. 58(3), 476–485 (2022).

    Article  CAS  Google Scholar 

  42. J.A. Allen, J. Phys. Chem. https://doi.org/10.1021/j150508a027 (1953).

    Article  Google Scholar 

Download references

Acknowledgement

The study was financially supported by Cukurova University (FBA-2022-14375). The authors thank anonymous reviewers for their suggestion and comments to improve the quality of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Altiner.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1881 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altiner, M., Ibrahim, A.I.I., Kursunoglu, S. et al. Characterization of Nickel in Chromite Beneficiation Tailings by Mineral Liberation Analysis and Its Recovery by H2SO4 Leaching Followed by Oxalic Acid Precipitation. JOM 76, 1383–1393 (2024). https://doi.org/10.1007/s11837-023-06253-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06253-z

Navigation