Skip to main content
Log in

Fabrication of Gasar Porous Mg Agx (x = 0.5, 17.57) Alloys Via the Metal-H Eutectic Directional Solidification Process

  • Innovations in Forming Technologies for Light Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Gasar porous Mg-Ag alloys have been the focus of research due to their better biodegradable and catalytic performances. Pore structure inside the porous alloy mainly determines the practical aforementioned applications. To gain knowledge on the effect mechanism of alloying elements on pore structure, ordered porous MgAgx alloys were fabricated through Gasar method. The influence of Ag content on pore structures was analyzed. On one hand, a wider mushy zone with the Ag addition of 0.5 at.% promotes the forming of cellular crystals and then disturbs the continuous growth of pores. On the other hand, compared with the concentrated primary phase, the lamellar distribution of eutectic microstructure is beneficial to obtain regular pores. Based on the binary thermodynamic model, a ternary alloy system model describing the relationship between pore structures and experimental parameters was developed, and the predicted results were in good agreement with the experimental values. This research aimed to provide the theoretical guidance and technical basis for the subsequent detailed control of the porous structure of Gasar magnesium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the data used in this work are available in the manuscript. The data are real and repeatable. The authors declare that data supporting the findings of this study are available within the article.

References

  1. N. Sezer, Z. Evis, S.M. Kayhan, and S. Murat, J. Magnes. Alloys. https://doi.org/10.1016/j.jma.2018.02.003 (2018).

    Article  Google Scholar 

  2. G. Jia, Y. Hou, C. Chen, J. Niu, H. Zhang, H. Huang, M. Xiong, and G. Yuan, Mater. Des. https://doi.org/10.1016/j.matdes.2017.11.064 (2017).

    Article  Google Scholar 

  3. X. Sun, Z.Y. Cao, J.L. Zhang, D.M. Jiang, and L. Guo, Corros. Eng. Sci. Technol. 49(4), 303 https://doi.org/10.1179/1743278213Y.0000000146 (2014).

    Article  CAS  Google Scholar 

  4. W. Wang, G.Z. Jia, Q. Wang, H. Huang, X.L. Li, H. Zeng, W.J. Ding, F. Witte, C.Q. Zhang, W.T. Jia, and G.Y. Yuan, Mater. Des. https://doi.org/10.1016/j.matdes.2020.108514 (2020).

    Article  Google Scholar 

  5. Y. Yamada, K. Shimojima, Y. Sakaguchi, M. Mabuchi, M. Nakamura, T. Asahina, T. Mukai, H. Kanahashi, and K. Higashi, J. Mater. Sci. Lett. 18, 1477–1480 (1999).

    Article  CAS  Google Scholar 

  6. C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, and T. Asahina, Scr. Mater. https://doi.org/10.1016/S1359-6462(01)01132-0 (2001).

    Article  Google Scholar 

  7. F. Witte, H. Ulrich, C. Palm, and E.J. Willbold, Biomed. Mater. Res. A. https://doi.org/10.1002/jbm.a.31293 (2007).

    Article  Google Scholar 

  8. X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Liu, and Y.X. Li, Mater. Lett. https://doi.org/10.1016/j.matlet.2010.06.015 (2010).

    Article  Google Scholar 

  9. Z. Liu, S. Ronald, L. Bérengère, N. Hort, H. Rothe, S. Müller, K. Liefeith, R. Willumeit-Römer, and F. Feyerabend, Oxid. Med. Cell. Longev. https://doi.org/10.1155/2017/8091265 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. A. Nostro, L. Cellini, M. Di Giulio, M. D’Arrigo, A. Marino, A. Blanco, A. Favaloro, G. Cutroneo, and G. Bisignano, APMIS. https://doi.org/10.1111/j.1600-0463.2012.02900.x (2012).

    Article  PubMed  Google Scholar 

  11. J.H. Zeng, L. Ren, Y.J. Yuan, Y.S. Wang, J.B. Zhao, R.M. Zeng, K. Yang, and X.F. Mei, J. Mater. Sci. Mater. Med. https://doi.org/10.1007/s10856-013-4982-6 (2013).

    Article  PubMed  Google Scholar 

  12. R.J. White, Br. J. Community Nurs. https://doi.org/10.12968/BJCN.2001.6.SUP1.12619 (2001).

    Article  PubMed  Google Scholar 

  13. J. Hardes, A. Streitburger, H. Ahrens, T. Nusselt, C. Gebert, W. Winkelmann, A. Battmann, and G. Gosheger, Sarcoma. https://doi.org/10.1155/2007/26539 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  14. M.Z. Liu, Z.J. Li, F. Li, Q.L. Jin, X.P. Yang, and C.P. Xia, Mater. Lett. https://doi.org/10.1016/j.matlet.2022.131920 (2022).

    Article  Google Scholar 

  15. X.P. Yang, Z.J. Li, Q.L. Jin, M.Z. Liu, and C.P. Xia, Mater. Lett. https://doi.org/10.1016/j.matlet.2022.132760 (2022).

    Article  Google Scholar 

  16. C.X. Zhou, G.Q. Liang, Y. Liu, H.W. Zhang, X. Chen, Y.X. Li, and J. Magnes, Alloys. https://doi.org/10.1016/j.jma.2021.03.026 (2021).

    Article  Google Scholar 

  17. G.R. Jiang, Y.X. Li, and Y. Liu, Metall. Mater. Trans. A. https://doi.org/10.1007/s11661-010-0402-4 (2010).

    Article  Google Scholar 

  18. J.S. Park, S.K. Hyun, S. Suzuki, and H. Nakajima, Metall. Mater. Trans. A. https://doi.org/10.1007/s11661-008-9710-3 (2009).

    Article  Google Scholar 

  19. Z.J. Li, Q.L. Jin, T.W. Yang, R. Zhou, and Y.H. Jiang, Acta Metall. Sin. https://doi.org/10.3724/SP.J.1037.2013.00606 (2014).

    Article  Google Scholar 

  20. J. You, H. Rahnema, M.D. McMillan, and J. Nat, Gas Sci. Eng. https://doi.org/10.1016/j.jngse.2016.08.004 (2016).

    Article  Google Scholar 

  21. Q.L. Jin, B. Wang, Z.J. Li, F. Li, E.D. Liu, Z.H. Li, and M.Z. Liu, Rare Metal Mater. Eng. 51(04), 1263–1269 (2022).

    CAS  Google Scholar 

  22. Y. Liu, Y.X. Li, J. Wang, and H.W. Zhang, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2005.03.107 (2005).

    Article  Google Scholar 

  23. L. Drenchev, J. Sobczak, S. Malinov, and W. Sha, Mater. Sci. Tech. https://doi.org/10.1179/174328406X118302 (2006).

    Article  Google Scholar 

  24. L. Drenchev, J. Sobczak, R. Asthana, and S.J. Malinov, Comput. Aided Mater. Des. https://doi.org/10.1023/B:JCAD.0000024187.71309.f1 (2003).

    Article  Google Scholar 

  25. Y. Liu and Y.X. Li, Scr. Mater. https://doi.org/10.1016/j.scriptamat.2004.12.017 (2005).

    Article  Google Scholar 

  26. Y. Liu, Y. Li, J. Wang, and H. Zhang, Metall. Mater. Trans. A. https://doi.org/10.1007/BF02586119 (2006).

    Article  Google Scholar 

  27. Y. Lu, Z.C. Wen, Q.L. Jin, and Y.H. Jiang, Int. J. Heat Mass Tran. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.097 (2015).

    Article  Google Scholar 

  28. G.R. Jiang, Tsinghua University (2010). https://www.dissertationtopic.net/doc/1500932

  29. J. Brillo and I. Egry, Int. J. Thermophys. https://doi.org/10.1023/A:1025021521945 (2003).

    Article  Google Scholar 

  30. P. Terzieff, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2006.11.074 (2008).

    Article  Google Scholar 

  31. O. Redlich and A.T. Kister, Ind. Eng. Chem. https://doi.org/10.1021/IE50458A036 (1948).

    Article  Google Scholar 

  32. M.A. Martorano and J.D.T. Capocchi, Int. J. Heat Mass Transf. https://doi.org/10.1016/S0017-9310(99)00298-7 (2000).

    Article  Google Scholar 

  33. C.A. Santos, J.M.V. Quaresma, and A. Garcia, J. Alloys Compd. https://doi.org/10.1016/S0925-8388(01)00904-5 (2001).

    Article  Google Scholar 

  34. C.A. Muojekwu, I.V. Samarasekera, and J.K. Brimacombe, Metall. Mater. Trans. B. https://doi.org/10.1007/BF02660979 (1995).

    Article  Google Scholar 

  35. D.P. Tao, Metall. Mater. Trans. A. https://doi.org/10.1007/s11661-005-0023-5 (2005).

    Article  Google Scholar 

  36. A.R. Miedema, F.R. de Boer, and R. Boom, Calphad. https://doi.org/10.1016/0364-5916(77)90011-6 (1977).

    Article  Google Scholar 

  37. A.R. Miedema, P.F. de Chatel, and F.R. de Boer, Phys. B C. https://doi.org/10.1016/0378-4363(80)90054-6 (1980).

    Article  Google Scholar 

  38. T. Tanaka, N.A. Gokcen, and Z. Morita, Int. J. Mater. Res. https://doi.org/10.1515/ijmr-1990-810107 (1990).

    Article  Google Scholar 

  39. T. Tanaka, N.A. Gokcen, and Z. Morita, Int. J. Mater. Res. https://doi.org/10.1515/ijmr-1990-810508 (1990).

    Article  Google Scholar 

  40. T. Tanaka, N.A. Gokcen, K.C. Hari Kumar, S. Hara, and Z. Morita, Int. J. Mater. Res. https://doi.org/10.1515/ijmr-1996-871007 (1996).

    Article  Google Scholar 

Download references

Acknowledgement

This project was supported by the National Natural science foundation of China (No. 51864026), Science and Technology Major Project of Yunnan Province (Grant No. 202202AG050011), Open Project of Yunnan Precious Metals Laboratory Co., Ltd. (No. YPML-2023050242).

Author information

Authors and Affiliations

Authors

Contributions

FB and BL developed the idea of the study, participated in its design and coordination and helped to draft the manuscript. GG and EL contributed to the acquisition and interpretation of data. XZ and ZL provided critical review and substantially revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zaijiu Li or Xiaohui Zhang.

Ethics declarations

Conflict of interest

The authors declare that there are no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The main thermo-physical parameters that directly affect the directional solidification process of an alloy include density ρf, latent heat of solidification L, specific heat capacity Cp, thermal conductivity λf, convection heat transfer coefficient between cooling water and crystallizer h0, etc.

  1. (1)

    Density

    The density of Mg-Ag alloy can be expressed as follows,

    $$ \rho = \frac{M}{V} $$
    (5)
    $$ V = {{V_{{\text{Ag,m}}} } \mathord{\left/ {\vphantom {{V_{{\text{Ag,m}}} } {\xi_{{{\text{Ag}}}} }}} \right. \kern-0pt} {\xi_{{{\text{Ag}}}} }} $$
    (6)
    $$ V_{{\text{Ag,m}}}^{2/3} = V_{{{\text{Ag}}}}^{2/3} \left[ {1 + \mu_{{{\text{Ag}}}} x_{{{\text{Ag}}}} \left( {\Phi_{{{\text{Ag}}}} - \Phi_{{{\text{Mg}}}} } \right)} \right] $$
    (7)

    where VAg,m is the molar volume of the Ag in the Mg-Ag alloy, m3/mol. ξAg is the molar volume fraction of the component Ag. μAg is the constant, which relates to elemental valence, μAg = 0.14 (monovalent alkali metals), μMg = 0.10 (and divalent alkali metals). The parameters for calculation are listed in Table 

    Table III Parameters for calculating density of Mg-Ag alloy28

    III.

    The results obtained are listed in Table 

    Table IV Density of Mg-Ag alloy

    IV.

  2. (2)

    Specific heat capacity of Mg-Ag alloys

    Specific heat capacity of Mg-Ag alloys can be calculated through Neumann-Kopp law29

    $$ C_{{\text{P}}} (T) = \sum {C_{{{\text{P}},i}} (T)} x_{i} $$
    (8)

    where Cp,i(T) is the constant pressure specific heat capacity of each element in the alloy, and xi is the mass percentage of element i in alloy. As for Mg-Ag alloy, Cp, (Mg) = 890 + 4.58 × 10−1 T, Cp, (Ag) = 230 + 1.5 × 10−1 T. The calculated results are listed in Table

    Table V Specific heat capacity of Mg-Ag alloys

     V.

  3. (3)

    Thermal conductivity

    The equipment used in the thermal diffusion coefficient test is the laser thermal conductivity analyzer (NETZSCH, German). The thermal diffusion coefficient specimen is first cut by wire-cutting method into Φ12.7 mm × 3 mm. Before the test, the specimens were polished with 1200 mesh, 3000 mesh, and 7000 mesh sandpaper until there were no scratches and then physically polished to ensure that the top and bottom planes of the Mg-Ag alloy specimens were smooth.

    When the temperature of the sample in the container is constant, the thermal diffusion coefficient α of the sample at that temperature can be given by the following equation,29

    $$ \alpha = {{0.1388\,d^{2} } \mathord{\left/ {\vphantom {{0.1388\,d^{2} } {t_{1/2} }}} \right. \kern-0pt} {t_{1/2} }} $$
    (9)

    where d is the thickness of the measured sample and t1/2 is the half heating time,

    $$ \lambda { = }\alpha \rho C_{{\text{p}}} $$
    (10)

    The results are listed in Table 

    Table VI Thermal conductivity of Mg-Ag

    VI.

  4. (4)

    Melt viscosity

    According to the ηF(Pa s) model proposed by Terzieff,30 the viscosity of Mg-Ag alloy can be expressed as,

    $$ \eta_{{\text{F}}} = \sum\limits_{i} {x_{{{\text{Ag}}}} \,\eta_{{{\text{Ag}}}} \left( {1 + \eta^{{\text{E}}} } \right)} $$
    (11)
    $$ \begin{aligned} \eta^{{\text{E}}} = & \alpha \frac{{x_{{{\text{Ag}}}} x_{{{\text{Mg}}}} \left( {\sigma_{{{\text{Ag}}}} - \sigma_{{{\text{Mg}}}} } \right)}}{{x_{{{\text{Ag}}}} \sigma_{{{\text{Ag}}}}^{2} - x_{{{\text{Mg}}}} \sigma _{{{\text{Mg}}}}^{2} }}^{2} + \beta \left\{ {\left[ {1 + \frac{{x_{{{\text{Ag}}}} x_{{{\text{Mg}}}} \left( {M_{{{\text{Ag}}}}^{1/2} - M_{{{\text{Mg}}}}^{1/2} } \right)^{2} }}{{x_{{{\text{Ag}}}} M_{{{\text{Ag}}}}^{1/2} + x_{{{\text{Mg}}}} M_{{{\text{Mg}}}}^{1/2} }}} \right]^{1/2} - 1} \right\} \\ & + 2\gamma \frac{{\Delta H_{{\text{m}}} }}{\Delta T} + \delta \frac{{2x_{{{\text{Ag}}}} x_{{{\text{Mg}}}} |V_{{{\text{Ag}}}} - V_{{{\text{Mg}}}} |}}{{V_{{{\text{Ag}}}} + V_{{{\text{Mg}}}} }} \\ \end{aligned} $$
    (12)

    η is the viscosity of alloy component i, σ1 and σ2 are the closest atomic spacings of the component, M1 and M2 are the molar masses of the component, and V1 and V2 are the molar volumes of the component. α, β, γ and δ are constants, and their values can be obtained by experimental regression, α = 4.05, β = 12.0, γ = 0.115, δ = 2.67 (Table 

    Table VII Parameters for calculating viscosity of Mg-Ag

    VII).

    The results are listed in Table 

    Table VIII Melt viscosity of Mg-Ag alloy

    VIII.

  5. (5)

    Latent heat of solidification

    According to the energy conservation law, the released heat L(J/kg) from the transformation of Mg-Ag alloy from liquid to solid can be expressed as

    $$ L = \frac{{H_{{\text{m}}}^{{{\text{liq}}}} (T_{{\text{L}}} ) - H_{{\text{m}}}^{{{\text{hcp}}}} (T_{{\text{L}}} )}}{M} $$
    (13)

    the molar mass of the Mg-Ag alloy (M) can be obtained using linear superposition Mg-Ag, \(H_{{\text{m}}}^{{{\text{liq}}}} (T_{{\text{L}}} )\) is the molar enthalpy of the liquid phase at the melting point (J/mol), and \(H_{{\text{m}}}^{{{\text{hcp}}}} (T_{{\text{L}}} )\) represents the molar enthalpy of hcp phase at the melting point.

    $$ H_{{\text{F}}} = x_{{{\text{Ag}}}} H_{{{\text{Ag}}}} + x_{{{\text{Mg}}}} H_{{{\text{Mg}}}} + \Delta H_{{\text{m}}} $$
    (14)

    where \(x_{{{\text{Ag}}}}\) and \(x_{{{\text{Mg}}}}\) are the molar fractions of Ag and Mg in Mg-Ag alloys. The melar enthalpy of Ag and Mg under different states are represented by \(H_{{{\text{Ag}}}}\) and \(H_{{{\text{Mg}}}}\); \(\Delta H_{{\text{m}}}\) is the molar heat of mixing in the alloy.31

    $$ \begin{aligned} & \Delta H_{{\text{m}}} = \frac{{x_{{{\text{Ag}}}} x_{{{\text{Mg}}}} V_{{{\text{Ag}},{\text{m}}}}^{2/3} V_{{{\text{Mg}},{\text{m}}}}^{2/3} }}{{\left( {x_{{{\text{Ag}}}} V_{{{\text{Ag}},{\text{m}}}}^{2/3} + x_{{{\text{Mg}}}} V_{{{\text{Mg}},{\text{m}}}}^{2/3} } \right)^{2} }}\frac{{2\left( {x_{{{\text{Ag}}}} V_{{{\text{Ag}},{\text{m}}}}^{2/3} + x_{{{\text{Mg}}}} V_{{{\text{Mg}},{\text{m}}}}^{2/3} } \right)}}{{\left( {n_{{{\text{ws}}}}^{1/3} } \right)_{{{\text{Ag}}}} + \left( {n_{{{\text{ws}}}}^{1/3} } \right)_{{{\text{Mg}}}} }} \\ & \quad p\left[ {\frac{q}{p}\left( {\Delta n_{{{\text{ws}}}}^{1/3} } \right)^{2} - (\Delta \Phi )^{2} - \frac{r}{p}} \right] \\ \end{aligned} $$
    (15)

    where xAg and xMg are the molar fraction of Ag and Mg, and VAg,m and VMg,m are the molar volume fractions of Ag and Mg in Mg-Ag alloy. The valency of the metal element, the molar volume of the pure group element VAg and the electronegativity all affect the molar volume of Ag in the Mg-Ag alloy, and the interrelationship can be expressed as follows,

    $$ V_{{{\text{Ag}}}}^{2/3} = V_{{{\text{Ag}}}}^{2/3} \left[ {1 + \mu_{{{\text{Ag}}}} x_{{{\text{Mg}}}} \left( {\Phi_{{{\text{Ag}}}} - \Phi_{{{\text{Mg}}}} } \right)} \right] $$
    (16)

    The latent heat of solidification of Mg-Ag alloy can be obtained according to the above equation. The values of latent heat of solidification parameters of Mg-Ag alloy are shown in Tables 

    Table IX Values of latent heat of solidification parameters of Mg-Ag alloy

    IX and

    Table X Calculated results of laten heat of solidification in Mg-Ag alloy

    X.

  6. (6)

    Heat transfer coefficient

    The crystallizer-sample interface heat transfer coefficient hFM is not a constant value during solidification but is related to the interface temperature, solidification rate, sample thermal conductivity, crystallizer thermal conductivity and many other factors.32 Martorano et al. investigated the interfacial heat transfer coefficient of Cu-Sn alloys during directional solidification on a Cu crystallizer, and the average value was about 2000–3000 (W/m2/K), a value similar to the experimentally determined value.33,34 During the finite element simulation, the interfacial heat transfer coefficient hFM between the Mg-Ag alloy specimen and the copper crystallizer is taken as approximately 3000 (W/m2/K). Convection heat transfer between crystallizer and cooling water h0 can be expressed as

    $$ h_{{\text{o}}} = 0.664\lambda \,{\text{pr}}^{1/3} \left( {\frac{{v_{0} }}{vR\sqrt \pi }} \right) $$
    (17)

    where λ(W/m/K) is the thermal conductivity of water, Pr is the Prandtl number of cooling water, and v(m2/s) is the kinematic viscosity of water. The above parameters are obtained at a temperature of T0, and the values of the parameters are shown in Table 

    Table XI Parameters for calculating h0

    XI. According to the above equation, h0 is 4000 (W/m2/K).

Appendix 2

The self-diffusion coefficient of the solute in the melt of a ternary alloy (Mg-Ag-H) is approximately related to the viscosity,35

$$ D\mu d{\text{/kT = 1/2}}\pi $$
(18)

k is the Boltzmann constant, μ is the alloy viscosity coefficient, and d is the average diameter of the Mg, Ag and H atoms. The viscosity factor can be expressed as

$$ \mu = \frac{5}{{16d^{2} }}\left( {\frac{{{\text{km}}_{{{\text{Ag}},{\text{Mg}},{\text{H}}}} T}}{\pi }} \right)^{1/2} $$
(19)

where mAg,Mg,H is the reduced mass of Ag, Mg and H atoms together. The relationship among the average atom diameter d, mass of each atom and mAg,Mg,H is

$$ d = \left( {\frac{{d_{{{\text{Ag}}}} + d_{{{\text{Mg}}}} + d_{{\text{H}}} }}{3}} \right) $$
(20)
$$ m_{{{\text{Ag}},{\text{Mg}},{\text{H}}}} = \frac{{m_{{{\text{Ag}}}} m_{{{\text{Mg}}}} + m_{{{\text{Ag}}}} m_{{\text{H}}} + m_{{\text{H}}} m_{{{\text{Mg}}}} }}{{m_{{{\text{Ag}}}} + m_{{{\text{Mg}}}} + m_{{\text{H}}} }} $$
(21)

Variation of Mg, Ag and H atomic diameters with temperature

$$ d = 1.288\left( {\frac{m}{{\rho_{{\text{m}}} }}} \right)^{{1/3}} \left[ {{1}{ - }{0}{\text{.112(}}T{/}T_{{\text{m}}} {)}^{{1/2}} } \right] $$
(22)

where ρm is the atom density at melt point, and Tm is the melting temperature of atoms. The relative parameters are listed in Table 

Table XII Relative parameters of Mg and Ag

XII.

Appendix 3

Determination of parameters in Tables I and II.

The solubility of hydrogen in the alloy melt \(x_{{\text{H}}}\) satisfies Sieverts’ law.

$$ x_{{\text{H}}} = \sqrt {{{p_{{{\text{H}}_{{2}} }} } \mathord{\left/ {\vphantom {{p_{{{\text{H}}_{{2}} }} } {p_{0} }}} \right. \kern-0pt} {p_{0} }}} \exp \left( {{{ - \Delta G_{{\text{m}}}^{0} } \mathord{\left/ {\vphantom {{ - \Delta G_{{\text{m}}}^{0} } {{\text{RT}}}}} \right. \kern-0pt} {{\text{RT}}}}} \right) $$
(23)

where \(\Delta G_{{\text{m}}}^{0}\) is the molar free energy change during the dissolution of hydrogen in the molten alloys. For an alloy melt that conforms to the properties of an ideal solution, the \(\Delta G_{{\text{m}}}^{0}\) (hydrogen in the alloy melt) can be expressed as

$$ \Delta G_{{\text{m}}}^{0} = \sum\limits_{i} {x_{i} \Delta G_{i}^{0} } $$
(24)

where \(x_{i}\) is the molar fraction of alloying element i in the alloy melt, and \(\Delta G_{i}^{0}\) is the molar free energy change for the dissolution of hydrogen in alloying element i. For alloy melts that are not ideal solutions, the modified solubility equation is as follows

$$ \Delta G_{{\text{m}}}^{0} = \sum\limits_{i} {x_{i} \Delta G_{i}^{0} } - \Delta G_{{\text{m}}}^{{{\text{ex}}}} $$
(25)

As hydrogen has difficulty forming compounds with the alloying elements, Eq. 25 can be used to calculate the solubility of hydrogen in the alloy melt. Substituting Eq. 25 into Eq. 23 gives the formula for the solubility of hydrogen in the alloy melt.

$$ \ln x_{{\text{H}}} = \sum\limits_{i} {x_{i} \ln x_{{{\text{H}},i}} } + {{\Delta G_{{\text{m}}}^{{{\text{ex}}}} } \mathord{\left/ {\vphantom {{\Delta G_{{\text{m}}}^{{{\text{ex}}}} } {{\text{RT}}}}} \right. \kern-0pt} {{\text{RT}}}} = \sum\limits_{i} {x_{i} \ln \gamma_{i} x_{{{\text{H}},i}} } $$
(26)

where \(x_{{{\text{H}},i}}\) is the hydrogen solubility in alloy elements i, and \(\gamma_{i}\) is the activity co-efficient of the element i,

$$ \left\{ {\begin{array}{*{20}l} {\Delta G_{{\text{m}}}^{{{\text{ex}}}} = {\text{RT}}\sum\limits_{i} {x_{i} \ln \,\gamma_{i} } } \hfill \\ {{\text{RT}}\,\ln \gamma_{i} = \Delta G_{{\text{m}}}^{{{\text{ex}}}} + \sum\limits_{j = 2}^{n} {\left( {\delta_{ij} - x_{i} } \right)\frac{{\partial \Delta G_{{\text{m}}}^{{{\text{ex}}}} }}{{\partial x_{i} }}} } \hfill \\ \end{array} } \right. $$
(27)

where δij is Kronecker mark (while i ≠ j, δij = 0 and while i = j, δij = 1).

The molar excess free energy of binary alloy \(\Delta G_{{\text{m}}}^{{{\text{ex}}}}\) is

$$ \Delta G_{{\text{m}}}^{{{\text{ex}}}} = G_{{\text{m}}} - G_{i} - G_{j} = {\text{RT}}\left[ {\sum {x_{i} \ln \left( {\frac{{\zeta_{i} }}{{x_{i} }}} \right)} + \frac{{\Delta \varepsilon_{{\text{p}}} }}{2kT}} \right] $$
(28)

The molar excess Gibbs free energy of the poly-alloy melt \(\Delta G_{{\text{m}}}^{{{\text{ex}}}}\) and the activity coefficient γi for component i are

$$ G_{{\text{m}}}^{{{\text{ex}}}} = {\text{RT}}\left[ {\sum\limits_{i = 1}^{n} {x_{i} \ln \frac{{V_{i} }}{{\sum\nolimits_{j = 1}^{n} {x_{j} V_{j} B_{ij} } }}} - \frac{1}{2}\sum\limits_{i = 1}^{n} {Z_{i} x_{i} \left( {\frac{{\sum\nolimits_{j = 1}^{n} {x_{j} B_{ij} \,\ln \,B_{ij} } }}{{\sum\nolimits_{k = 1}^{n} {x_{k} B_{ij} } }}} \right)} } \right] $$
(29)
$$ \begin{aligned} \ln \,\gamma_{i} = & 1 + \ln \frac{{V_{i} }}{{\mathop \Sigma \nolimits_{j = 1}^{n} x_{j} V_{j} B_{ij} }} - \sum\limits_{k = 1}^{n} {\frac{{x_{k} V_{i} B_{ki} }}{{\mathop \Sigma \nolimits_{j = 1}^{n} x_{j} V_{j} B_{kj} }}} \\ & - \frac{1}{2}\left[ {\frac{{Z_{i} \mathop \Sigma \nolimits_{j = 1}^{n} x_{j} B_{ij} \ln B_{ij} }}{{\mathop \Sigma \nolimits_{l = 1}^{n} x_{l} B_{il} }} + \sum\limits_{j = 1}^{n} {\frac{{Z_{j} x_{j} B_{ji} }}{{\mathop \Sigma \nolimits_{l = 1}^{n} x_{l} B_{jl} }}} } \right. \\ & \times \left. {\left( {\ln B_{ji} - \frac{{\mathop \Sigma \nolimits_{t = 1}^{n} x_{t} B_{jt} \ln B_{jt} }}{{\mathop \Sigma \nolimits_{l = 1}^{n} x_{l} B_{jl} }}} \right)} \right] \\ \end{aligned} $$
(30)

In Eqs. 29 and 30, the molar fraction xi of alloy element i is available, and the molar volume Vi is also available from experimental data. The parameters that need to be determined are the coordination number Zi and interaction parameter Bij. Zi could be calculated through the following formula36

$$ Z_{i} = \frac{{32\sqrt {2\pi } }}{3}\left( {\frac{{\overline{r}_{i}^{3} - r_{i}^{3} }}{{\overline{r}_{i} - r_{i} }}} \right)\frac{{N_{{\text{A}}} }}{{V_{i} }}r_{i} \exp \left( {\frac{{\Delta H_{{{\text{m,}}i}} \left( {T - T_{{{\text{m,}}i}} } \right)}}{{12\,{\text{RTT}}_{{{\text{m,}}i}} }}} \right) $$
(31)

where Avogadro’s constant NA = 6.022 × 1023 (mol−1), Tm,i is the melting point of I, ΔHm,i (J/mol) is the solidification latent heat, \(r_{i}\) is the Goldschmidt radius of the metal atom of alloy element i, and \(\overline{r}_{i}\) is half the average spacing of the atoms of the alloy element i. This can be approximated as 0.918 times the atomic covalent radius rconv.

The interaction parameter Bij can be obtained. Let xi and xj in Eq. 29 tend to 0 respectively to derive the infinite dilution activity coefficients (\(\gamma_{i}^{\infty }\) and \(\gamma_{j}^{\infty }\)) for binary alloy melts ij,

$$ \left\{ {\begin{array}{*{20}l} {\ln \gamma_{i}^{\infty } = 1 - \ln \left( {\frac{{V_{j} B_{ij} }}{{V_{i} }}} \right) - \frac{{V_{i} B_{ji} }}{{V_{j} }} - \frac{1}{2}\left( {Z_{i} \ln B_{ij} + Z_{j} B_{ji} \ln B_{ji} } \right)} \hfill \\ {\ln \gamma_{j}^{\infty } = 1 - \ln \left( {\frac{{V_{i} B_{ji} }}{{V_{j} }}} \right) - \frac{{V_{j} B_{ij} }}{{V_{i} }} - \frac{1}{2}\left( {Z_{j} \ln B_{ji} + Z_{i} B_{ij} \ln B_{ij} } \right)} \hfill \\ \end{array} } \right. $$
(32)

The infinite dilution activity coefficients (\(\gamma_{i}^{\infty }\) and \(\gamma_{j}^{\infty }\)) for binary alloy melts ij could be determined through experiments; however, data are scarce and measurements are difficult. Thus, the Miedema model in binary alloys can be considered.36,37,38

According to the Miedema model, binary alloys formed by metal elements i and j could be regarded as the mechanical mixture; the Wigner-Seitz cell of the metal remains unchanged in volume but changes in shape. The heat of mixing of binary alloys \(\Delta H_{{\text{m}}}\) is caused by changes in the cell boundary conditions. In the Miedema model, the contribution of three factors to the mixing heat of the alloy is considered. (1) The positive contribution \(q\Delta n_{{{\text{ws}}}}^{{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0pt} 3}}}\) of electron density difference \(\Delta n_{{{\text{ws}}}}\) at Wigner-Seitz cell boundaries; q is an empirical constant. (2) The negative contribution \(- p(\Delta \phi )^{2}\) of electronegativity differences \(\Delta \phi\) between metallic elements; p is an empirical constant. (3) The negative contribution of electron orbital hybridization, expressed as an empirical constant r. On this basis, the heat of mixing of the binary alloy \(\Delta H_{{\text{m}}}\) can be expressed as

$$ \Delta H_{{\text{m}}} = f\left( {x_{i} ,V} \right)g\left( {x_{i} ,n_{{{\text{ws}}}} } \right)p\left[ {\frac{q}{p}\left( {\Delta n_{{{\text{ws}}}}^{{{{1} \mathord{\left/ {\vphantom {{1} 3}} \right. \kern-0pt} 3}}} } \right)^{2} - \left( {\Delta \phi } \right)^{2} - \frac{r}{p}} \right] $$
(33)

In Eq. 33,

$$ f\left( {x,V} \right) = \frac{{x_{i} x_{j} V_{{i,{\text{m}}}}^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}}} V_{{j,{\text{m}}}}^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}}} }}{{\left( {x_{i} V_{{i,{\text{m}}}}^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}}} + x_{j} V_{{j,{\text{m}}}}^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}}} } \right)^{2} }} $$
(34a)
$$ g\left( {x,n_{{{\text{ws}}}} } \right) = 2\frac{{x_{i} V_{{i,{\text{m}}}}^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}}} + x_{j} V_{{j,{\text{m}}}}^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}}} }}{{\left( {n_{{{\text{ws}}}}^{{{{1} \mathord{\left/ {\vphantom {{1} 3}} \right. \kern-0pt} 3}}} } \right)_{i} + \left( {n_{{{\text{ws}}}}^{{{{1} \mathord{\left/ {\vphantom {{1} 3}} \right. \kern-0pt} 3}}} } \right)_{j} }} $$
(34b)

where \(V_{{i,{\text{m}}}}\) and \(V_{{j,{\text{m}}}}\) are the molar volumes of elements i and j in the alloy, respectively (m3/mol), which are related to the chemical valence of the metal element, the molar volume Vi in the pure state and the electronegativity,

$$ V_{{i,{\text{m}}}}^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}}} = V_{i}^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}}} \left[ {1 + \mu_{i} x_{j} \left( {\phi_{i} - \phi_{j} } \right)} \right] $$
(35)

where μi is a constant related to elemental valence, μi = 0.14 (monovalent alkali metals), 0.10 (divalent alkaline earth metals) (Mg), 0.07 (trivalent main group metals and precious metals) and0.04 (other metals). q/p is 9.4, and the value of p is12.3.37 Other parameters such as ϕ, \(n_{{{\text{ws}}}}^{{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0pt} 3}}}\), V2/3 and r/p* used in the Miedema model are also determined according to Ref. 37.

The molar excess entropy of a binary alloy \(\Delta S_{{\text{m}}}^{{{\text{ex}}}}\) can be expressed as a function of the heat of mixing using the approximation proposed by Tanaka39,40

$$ \left\{ {\begin{array}{*{20}l} {\Delta S_{{\text{m}}}^{{{\text{ex}}}} = \frac{1}{14.0}\Delta H_{{\text{m}}} \cdot \left( {1/T_{{{\text{m}},i}} + 1/T_{{{\text{m}},j}} } \right)} \hfill & {{\text{Liquid}}} \hfill \\ {\Delta S_{{\text{m}}}^{{{\text{ex}}}} = \frac{1}{15.1}\Delta H_{{\text{m}}} \cdot \left( {1/T_{{{\text{m}},i}} + 1/T_{{{\text{m}},j}} } \right)} \hfill & {{\text{Solid}}\, {\text{solution}}} \hfill \\ \end{array} } \right. $$
(36)

Substituting Eqs. 33 and 36 into Eq. 25, the activity coefficient of the binary alloy elements (γi and γj) are calculated.

$$ \left\{ {\begin{array}{*{20}c} {{\text{RT}}\,\ln \gamma_{i} = \alpha_{ij} f_{ij} \left\{ {{A \mathord{\left/ {\vphantom {A B}} \right. \kern-0pt} B} + x_{j} {{\left[ {\left( {E \cdot D + F \cdot C} \right) \cdot B - G \cdot A} \right]} \mathord{\left/ {\vphantom {{\left[ {\left( {E \cdot D + F \cdot C} \right) \cdot B - G \cdot A} \right]} {B^{2} }}} \right. \kern-0pt} {B^{2} }}} \right\}} \\ {{\text{RT}}\,\ln \gamma_{j} = \alpha_{ij} f_{ij} \left\{ {{A \mathord{\left/ {\vphantom {A B}} \right. \kern-0pt} B} + x_{i} {{\left[ {\left( {E \cdot D + F \cdot C} \right) \cdot B + G \cdot A} \right]} \mathord{\left/ {\vphantom {{\left[ {\left( {E \cdot D + F \cdot C} \right) \cdot B + G \cdot A} \right]} {B^{2} }}} \right. \kern-0pt} {B^{2} }}} \right\}} \\ \end{array} } \right. $$
(37)

In Eq. 37

$$ A = x_{i} x_{j} \left[ {1 + \mu_{i} x_{j} \left( {\phi_{i} - \phi_{j} } \right)} \right]\left[ {1 + \mu_{j} x_{i} \left( {\phi_{j} - \phi_{i} } \right)} \right] $$
(38a)
$$ B = x_{i} V_{i}^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}}} \left[ {1 + \mu_{i} x_{j} \left( {\phi_{i} - \phi_{j} } \right)} \right] + x_{j} V_{j}^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}}} \left[ {1 + \mu_{j} x_{i} \left( {\phi_{j} - \phi_{i} } \right)} \right] $$
(38b)
$$ C = x_{i} \left[ {1 + \mu_{i} x_{j} \left( {\phi_{i} - \phi_{j} } \right)} \right] $$
(38c)
$$ D = x_{j} \left[ {1 + \mu_{j} x_{i} \left( {\phi_{j} - \phi_{i} } \right)} \right] $$
(38d)
$$ E = 1 + \mu_{i} \left( {\phi_{i} - \phi_{j} } \right)\left( {x_{j} - x_{i} } \right) $$
(38e)
$$ F = 1 + \mu_{j} \left( {\phi_{j} - \phi_{i} } \right)\left( {x_{i} - x_{j} } \right) $$
(38f)
$$ \begin{aligned} G = & V_{i}^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}}} \left[ {1 + \mu_{i} x_{j} \left( {\phi_{i} - \phi_{j} } \right)} \right] - x_{i} V_{i}^{2/3} \mu_{i} \left( {\phi_{i} - \phi_{j} } \right) \\ & - V_{j}^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}}} \left[ {1 + \mu_{j} x_{i} \left( {\phi_{j} - \phi_{i} } \right)} \right] + x_{j} V_{j}^{{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-0pt} 3}}} \mu_{j} \left( {\phi_{j} - \phi_{i} } \right) \\ \end{aligned} $$
(38g)
$$ \left\{ {\begin{array}{*{20}l} {\alpha_{ij} = 1 - \frac{1}{14.0}T\frac{{T_{{{\text{m,}}i}} + T_{{{\text{m,}}j}} }}{{T_{{{\text{m,}}i}} T_{{{\text{m,}}j}} }}} \hfill & {{\text{Liquid}}} \hfill \\ {\alpha_{ij} = 1 - \frac{1}{15.1}T\frac{{T_{{{\text{m,}}i}} + T_{{{\text{m,}}j}} }}{{T_{{{\text{m,}}i}} T_{{{\text{m,}}j}} }}} \hfill & {{\text{Solid}} \,{\text{solution}}} \hfill \\ \end{array} } \right. $$
(38h)

In addition, the solubility of hydrogen in pure Mg could be obtained.

$$ {\text{ln}}\,S_{{\text{H}}} = { 6}.{558} - {2533}/T + {1}/{2}\,{\text{ln }}\left( {p_{{{\text{H2}}}} /p_{0} } \right) $$
(39)

After calculation, the required physical parameters for the model are listed in Tables I and II.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, F., Liu, B., Liu, E. et al. Fabrication of Gasar Porous Mg Agx (x = 0.5, 17.57) Alloys Via the Metal-H Eutectic Directional Solidification Process. JOM 76, 1856–1869 (2024). https://doi.org/10.1007/s11837-023-06248-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06248-w

Navigation