Skip to main content
Log in

Effect of a Large Height-to-Diameter Ratio Upsetting–Extrusion Process on the Microstructure and Mechanical Properties of Mg-Gd-Y-Zn-Zr Alloys

  • Innovations in Forming Technologies for Light Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, Mg-Gd-Y-Zn-Zr alloy bars with the height-to-diameter ratio of 6.5 were deformed using a novel large height-to-diameter ratio upsetting–extrusion process. After the initial billets were upset at 460°C, they were extruded at 460–420°C, respectively, and the true strain of one-pass upsetting–extrusion deformation reached 2.46. The results showed that the 420°C extruded samples had the highest recrystallization fraction of 75.2%. Continuous dynamic recrystallization and discontinuous dynamic recrystallization occurred during upsetting and extrusion, and the lower extrusion temperature favored the precipitation of large particles of Mg5(RE) phase and refined the grains through the particle-stimulated nucleation mechanism, and the average grain size decreased from 93.8 μm to a minimum of 15.3 μm. The 440°C extruded samples have the best mechanical properties with yield strength, ultimate tensile strength, and elongation of 260 MPa, 368 MPa, and 13.1%, respectively. Texture strengthening and dislocation strengthening dominate, and the appropriate proportion of coarse grains accommodating deformation has enabled the high elongation. In addition, the anomalous texture of the basal plane perpendicular to the extrusion direction was found in the high recrystallization fraction samples and attributed to the selective growth of recrystallized grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Liu, Y. Meng, H. Yu, W. Xu, S. Zhang, L. Jia, and G. Wu, Materials (Basel). https://doi.org/10.3390/ma13153290 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Q. Deng, Y. Wu, W. Zhu, K. Chen, D. Liu, L. Peng, and W. Ding, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2021.142139 (2022).

    Article  Google Scholar 

  3. M. Shokri, A. Zarei-Hanzaki, H.R. Abedi, and J.H. Cho, J. Market. Res. 15, 6974–6989 https://doi.org/10.1016/j.jmrt.2021.11.058 (2021).

    Article  CAS  Google Scholar 

  4. J. Zheng, Z. Yan, J. Ji, Y. Shi, H. Zhang, Z. Zhang, and Y. Xue, J. Magn. Alloys 10, 1124 https://doi.org/10.1016/j.jma.2021.05.018 (2022).

    Article  CAS  Google Scholar 

  5. J. Zheng, Z. Chen, Z. Yan, Z. Zhang, Q. Wang, and Y. Xue, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.162490 (2022).

    Article  Google Scholar 

  6. J. Zheng, Z. Chen, Z. Yan, Z. Zhang, and Y. Xue, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2021.142103 (2021).

    Article  Google Scholar 

  7. J. Shao, Z. Chen, T. Chen, R. Wang, Y. Liu, and C. Liu, Mater. Sci. Eng. A 731, 479 https://doi.org/10.1016/j.msea.2018.06.062 (2018).

    Article  CAS  Google Scholar 

  8. C. Xu, M.Y. Zheng, K. Wu, E.D. Wang, G.H. Fan, S.W. Xu, S. Kamado, X.D. Liu, G.J. Wang, and X.Y. Lv, J. Alloys Compd. 550, 50 https://doi.org/10.1016/j.jallcom.2012.09.101 (2013).

    Article  CAS  Google Scholar 

  9. S. Zhang, W. Liu, X. Gu, C. Lu, G. Yuan, and W. Ding, J. Alloys Compd. 557, 91 https://doi.org/10.1016/j.jallcom.2012.12.093 (2013).

    Article  CAS  Google Scholar 

  10. Y. Xue, Z. Wang, L. Jia, J. Zheng, Z. Zhang, J. Yu, and X. Zhao, Mater. Tehnol. https://doi.org/10.17222/mit.2021.317 (2022).

    Article  Google Scholar 

  11. S. Wenjia, Z. Zhimin, M. Mu, and Y. Yongbiao, Mater. Res. Express. https://doi.org/10.1088/2053-1591/aaa309 (2018).

    Article  Google Scholar 

  12. Q. Wei, L. Yuan, X. Ma, M. Zheng, D. Shan, and B. Guo, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2021.142144 (2022).

    Article  Google Scholar 

  13. Z. Zhang, J.-H. Zhang, J. Wang, Z.-H. Li, J.-S. Xie, S.-J. Liu, K. Guan, and R.-Z. Wu, Int. J. Miner. Metall. Mater. 28, 30 https://doi.org/10.1007/s12613-020-2190-1 (2020).

    Article  CAS  Google Scholar 

  14. H. Yu, S.H. Park, and B.S. You, Mater. Sci. Eng. A 610, 445 https://doi.org/10.1016/j.msea.2014.05.058 (2014).

    Article  CAS  Google Scholar 

  15. Y. Wan, B. Tang, Y. Gao, L. Tang, G. Sha, B. Zhang, N. Liang, C. Liu, S. Jiang, Z. Chen, X. Guo, and Y. Zhao, Acta Mater. 200, 274 https://doi.org/10.1016/j.actamat.2020.09.024 (2020).

    Article  ADS  CAS  Google Scholar 

  16. B. Li, B. Teng, and G. Chen, Mater. Sci. Eng. A 744, 396 https://doi.org/10.1016/j.msea.2018.12.024 (2019).

    Article  CAS  Google Scholar 

  17. C. Huang, C. Liu, S. Jiang, Y. Wan, and Y. Gao, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2021.140853 (2021).

    Article  Google Scholar 

  18. Z. Yan, Z. Zhang, X. Li, J. Xu, Q. Wang, G. Zhang, J. Zheng, H. Fan, K. Xu, J. Zhu, and Y. Xue, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.153698 (2020).

    Article  Google Scholar 

  19. G. Jialin, L. Wei, W. Hongxia, Z. Xingguo, and B. Liping, Rare Metal Mater. Eng. 42, 1800 https://doi.org/10.1016/s1875-5372(14)60008-4 (2013).

    Article  Google Scholar 

  20. S. Amani, and G. Faraji, Int. J. Min. Met. Mater. 25, 672 https://doi.org/10.1007/s12613-018-1614-7 (2018).

    Article  CAS  Google Scholar 

  21. X. Chen, C. Liu, S. Jiang, and Y. Wan, Mater. Lett. https://doi.org/10.1016/j.matlet.2021.130995 (2022).

    Article  Google Scholar 

  22. W.T. Sun, X.G. Qiao, M.Y. Zheng, Y. He, N. Hu, C. Xu, N. Gao, and M.J. Starink, Mater. Sci. Eng. A 728, 115 https://doi.org/10.1016/j.msea.2018.05.021 (2018).

    Article  CAS  Google Scholar 

  23. H. Liu, J. Ju, J. Bai, J. Sun, D. Song, J. Yan, J. Jiang, and A. Ma, Metals. https://doi.org/10.3390/met7100398 (2017).

    Article  Google Scholar 

  24. S.M. Ramezani, A. Zarei-Hanzaki, H.R. Abedi, A. Salandari-Rabori, and P. Minarik, J. Alloys Compd. 793, 134 https://doi.org/10.1016/j.jallcom.2019.04.158 (2019).

    Article  CAS  Google Scholar 

  25. Y. Meng, J. Yu, K. Liu, H. Yu, F. Zhang, Y. Wu, Z. Zhang, N. Luo, and H. Wang, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.154454 (2020).

    Article  Google Scholar 

  26. G. Zhang, Z. Zhang, Y. Du, Z. Yan, and X. Che, Materials (Basel). https://doi.org/10.3390/ma11112092 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. X. Zhao, S. Li, Y. Zheng, Z. Liu, K. Chen, J. Yu, Z. Zhang, and S. Zheng, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.160871 (2021).

    Article  Google Scholar 

  28. L. Jia, J. Yu, W. Xu, G. Wu, Q. Xia, and Z. Zhang, Mater. Res. Express. https://doi.org/10.1088/2053-1591/abe8e8 (2021).

    Article  Google Scholar 

  29. Y. Ye, C. Liu, and Y. Xue, Mater. Lett. https://doi.org/10.1016/j.matlet.2023.134047 (2023).

    Article  Google Scholar 

  30. G. Zhang, Y. Meng, F. Yan, Z. Gao, Z. Yan, and Z. Zhang, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.152452 (2020).

    Article  Google Scholar 

  31. J.-K. Kim, W.-S. Ko, S. Sandlöbes, M. Heidelmann, B. Grabowski, and D. Raabe, Acta Mater. 112, 171 https://doi.org/10.1016/j.actamat.2016.04.016 (2016).

    Article  ADS  CAS  Google Scholar 

  32. P. Maier, M. Schmahl, B. Clausius, C. Joy, and C. Fleck, Crystals. https://doi.org/10.3390/cryst12111673 (2022).

    Article  Google Scholar 

  33. C. Liu, L. Liu, J. Zheng, Z. Yan, Z. Zhang, Q. Wang, X. Li, and Y. Xue, J. Mater. Eng. Perform. 31, 9829 https://doi.org/10.1007/s11665-022-07022-w (2022).

    Article  CAS  Google Scholar 

  34. T. Chen, Z. Chen, J. Shao, R. Wang, L. Mao, and C. Liu, Mater. Sci. Eng. A 750, 31 https://doi.org/10.1016/j.msea.2019.02.040 (2019).

    Article  CAS  Google Scholar 

  35. S.Z. Wu, T. Nakata, G.Z. Tang, C. Xu, X.J. Wang, X.W. Li, X.G. Qiao, M.Y. Zheng, L. Geng, S. Kamado, and G.H. Fan, J. Mater. Sci. Technol. 73, 66 https://doi.org/10.1016/j.jmst.2020.09.020 (2021).

    Article  Google Scholar 

  36. D. Yue, Z. Zhimin, Z. Guanshi, Y. Zhaoming, and Y. Jianmin, Rare Met. Mat. Eng. 47, 1422 https://doi.org/10.1016/s1875-5372(18)30144-9 (2018).

    Article  Google Scholar 

  37. G. Zhang, Z. Zhang, X. Li, Z. Yan, X. Che, J. Yu, and Y. Meng, J. Alloys Compd. 790, 48 https://doi.org/10.1016/j.jallcom.2019.03.207 (2019).

    Article  CAS  Google Scholar 

  38. C. Liu, J. Ji, J. Zheng, Q. Wang, Z. Zhang, and Y. Xue, J. Market. Res. 23, 391 https://doi.org/10.1016/j.jmrt.2023.01.029 (2023).

    Article  CAS  Google Scholar 

  39. K. Wang, J. Wang, S. Huang, X. Dou, J. Wang, and C. Wang, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2021.142270 (2022).

    Article  Google Scholar 

  40. S. Lyu, W. Xiao, G. Li, D. Xia, Y. Huang, S. Gavras, N. Hort, R. Zheng, and C. Ma, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.153477 (2020).

    Article  Google Scholar 

  41. M.G. Jiang, C. Xu, H. Yan, T. Nakata, Z.W. Chen, C.S. Lao, R.S. Chen, S. Kamado, and E.H. Han, J. Magn. Alloys 9, 1797 https://doi.org/10.1016/j.jma.2020.09.001 (2021).

    Article  CAS  Google Scholar 

  42. J.H. He, L. Jin, F.H. Wang, S. Dong, and J. Dong, J. Magn. Alloys 5, 423 https://doi.org/10.1016/j.jma.2017.09.004 (2017).

    Article  CAS  Google Scholar 

  43. J. Zheng, L. Liu, W. Liu, Y. Huang, Z. Zhang, Q. Wang, Z. Yan, and Y. Xue, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2022.166920 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the National Natural Science Foundation of China (Grant no. 52075501 and 52205428) and the Fundamental Research Program of Shanxi Province (no. 20210302124206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, W., Liu, C., Zhang, Z. et al. Effect of a Large Height-to-Diameter Ratio Upsetting–Extrusion Process on the Microstructure and Mechanical Properties of Mg-Gd-Y-Zn-Zr Alloys. JOM 76, 1831–1843 (2024). https://doi.org/10.1007/s11837-023-06215-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06215-5

Navigation