Skip to main content

Advertisement

Log in

Recrystallization and mechanical properties of WE43 magnesium alloy processed via cyclic expansion extrusion

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In this study, cyclic expansion extrusion (CEE), as a relatively new severe plastic deformation (SPD) process, is applied to a rare earth (RE) containing Mg alloy WE43. The effects of the processing temperature and the number of passes are also investigated. The results showed that dynamic recrystallization (DRX) occurred after CEE processing at 400°C, and a bimodal structure with ultrafine DRXed grains surrounded the unrecrystallized grains. However, the DRX at 330°C was retarded because of the existence of RE elements. The tensile tests showed that a simultaneous increase in the strength and the ductility of WE43 is obtained after CEE processing at 400°C via two passes. Furthermore, the highest ultimate tensile strength of 440 MPa was achieved after the second pass of CEE at 330°C, and the highest ductility of 21% was attained after the second pass of CEE at 400°C. The microhardness measurements showed that the hardness increased from HV 80 to HV 114 and HV 98 after two passes of CEE processing at 330 and 400°C, respectively. In conclusion, increasing the processing passes could increase the mechanical properties and the volume fraction of the recrystallized grains. Moreover, increasing the temperature reduced the strength and the microhardness even if the elongation increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ma, K. Zhang, X.G. Li, Y.J. Li, G.L. Shi, and J.W. Yuan, Influence of solution and aging on the microstructures and mechanical properties of complex deformed WE93 alloy, Mater. Des., 51(2013), p. 73.

    Article  Google Scholar 

  2. W.Z. Chen, X. Wang, L.X. Hu, and E. Wang, Fabrication of ZK60 magnesium alloy thin sheets with improved ductility by cold rolling and annealing treatment, Mater. Des., 40(2012), p. 319.

    Article  Google Scholar 

  3. M. Mabuchi, T. Asahina, H. Iwasaki, and K. Higashi, Experimental investigation of superplastic behaviour in magnesium alloys, Mater. Sci. Technol., 13(1997), No. 10, p. 825.

    Article  Google Scholar 

  4. W. Püschl, Models for dislocation cross-slip in close-packed crystal structures: a critical review, Prog. Mater. Sci., 47(2002), No. 4, p. 415.

    Article  Google Scholar 

  5. B. Smola, L. Joska, V. Březina, I. Stulíková, and F. Hnilica, Microstructure, corrosion resistance and cytocompatibility of Mg–5Y–4rare earth–0.5 Zr (WE54) alloy, Mater. Sci. Eng. C, 32(2012), No. 4, p. 659.

    Article  Google Scholar 

  6. H. Windhagen, K. Radtke, A. Weizbauer, J. Diekmann, Y. Noll, U. Kreimeyer, R. Schavan, C. Stukenborg-Colsman, and H. WaizyEmail, Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study, Biomed. Eng. Online, 12(2013), No. 1, p. 62.

    Article  Google Scholar 

  7. B. O’Brien and W. Carroll, The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review, Acta Biomater., 5(2009), No. 4, p. 945.

    Article  Google Scholar 

  8. V. Neubert, I. Stulíková, B. Smola, B.L. Mordike, M. Vlach, A. Bakkar, and J. Pelcová, Thermal stability and corrosion behaviour of Mg–Y–Nd and Mg–Tb–Nd alloys, Mater. Sci. Eng. A, 462(2007), No. 1-2, p. 329.

    Article  Google Scholar 

  9. C. Xu, K.N. Xia, and T.G. Langdon, Processing of a magnesium alloy by equal-channel angular pressing using a back-pressure, Mater. Sci. Eng. A, 527(2009), No. 1-2, p. 205.

    Article  Google Scholar 

  10. A.P. Zhilyaev and T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications, Prog. Mater. Sci., 53(2008), No. 6, p. 893.

    Article  Google Scholar 

  11. G. Faraji, M. Mashhadi, and H.S. Kim, Microstructure inhomogeneity in ultra-fine grained bulk AZ91 produced by accumulative back extrusion (ABE), Mater. Sci. Eng. A, 528(2011), No. 13-14, p. 4312.

    Article  Google Scholar 

  12. G. Faraji, M.M. Mashhadi, and H.S. Kim, Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes, Mater. Lett., 65(2011), No. 19-20, p. 3009.

    Article  Google Scholar 

  13. J. Richert and M. Richert, A new method for unlimited deformation of metals and alloys, Aluminium, 62(1986), No. 8, p. 604.

    Google Scholar 

  14. N. Pardis, B. Talebanpour, R. Ebrahimi, and S. Zomorodian, Cyclic expansion-extrusion (CEE): a modified counterpart of cyclic extrusion-compression (CEC), Mater. Sci. Eng. A, 528(2011), No. 25-26, p.7537.

    Article  Google Scholar 

  15. M. Ensafi, G. Faraji, and H. Abdolvand, Cyclic extrusion compression angular pressing (CECAP) as a novel severe plastic deformation method for producing bulk ultrafine grained metals, Mater. Lett., 197(2017), p. 12.

    Article  Google Scholar 

  16. G. Faraji, M.M. Mashhadi, K. Abrinia, and H.S. Kim, Deformation behavior in the tubular channel angular pressing (TCAP) as a noble SPD method for cylindrical tubes, Appl. Phys. A, 107(2012), No. 4, p. 819.

    Article  Google Scholar 

  17. G. Faraji, P. Yavari, S. Aghdamifar, and M.M. Mashhadi, Mechanical and microstructural properties of ultra-fine grained AZ91 magnesium alloy tubes processed via multi pass tubular channel angular pressing (TCAP), J. Mater. Sci. Technol., 30(2014), No. 2, p. 134.

    Article  Google Scholar 

  18. X. Zhang, G.Y. Yuan, and Z.Z. Wang, Mechanical properties and biocorrosion resistance of Mg–Nd–Zn–Zr alloy improved by cyclic extrusion and compression, Mater. Lett., 74(2012), p. 128.

    Article  Google Scholar 

  19. N. Pardis, C. Chen, M. Shahbaz, R. Ebrahimi, and L.S. Toth, Development of new routes of severe plastic deformation through cyclic expansion-extrusion process, Mater. Sci. Eng. A, 613(2014), p. 357.

    Article  Google Scholar 

  20. H. Sheikh and R. Ebrahimi, Investigation on texture evolution during cyclic expansion-extrusion (CEE) technique using crystal plasticity finite element modeling, J. Mater. Sci., 51(2016), No. 22, p. 10178.

    Article  Google Scholar 

  21. N. Pardis, C. Chen, R. Ebrahimi, L.S. Toth, C.F. Gu, B. Beausir, and L. Kommel, Microstructure, texture and mechanical properties of cyclic expansion-extrusion deformed pure copper, Mater. Sci. Eng. A, 628(2015), p. 423.

    Article  Google Scholar 

  22. S. Amani, G. Faraji, H.K. Mehrabadi, K. Abrinia, and H. Ghanbari, A combined method for producing high strength and ductility magnesium microtubes for biodegradable vascular stents application, J. Alloys Compd., 723(2017), p. 467.

    Article  Google Scholar 

  23. Q.D. Wang, Y.J. Chen, M.P. Liu, J.B. Lin, and H.J. Roven, Microstructure evolution of AZ series magnesium alloys during cyclic extrusion compression, Mater. Sci. Eng. A, 527(2010), No. 9, p. 2265.

    Article  Google Scholar 

  24. S.W. Xu, S. Kamado, N. Matsumoto, T. Honma, and Y. Kojima, Recrystallization mechanism of as-cast AZ91 magnesium alloy during hot compressive deformation, Mater. Sci. Eng. A, 527(2009), No. 1-2, p. 52.

    Article  Google Scholar 

  25. F.A. Slooff, J.S. Dzwonczyk, J. Zhou, J. Duszczyk, and L. Katgerman, Hot workability analysis of extruded AZ magnesium alloys with processing maps, Mater. Sci. Eng. A, 527(2010), No. 3, p. 735.

    Article  Google Scholar 

  26. S.A. Farzadfar, É. Martin, M. Sanjari, E. Essadiqi, and S. Yue, Texture weakening and static recrystallization in rolled Mg–2.9 Y and Mg–2.9 Zn solid solution alloys, J. Mater. Sci., 47(2012), No. 14, p. 5488.

    Article  Google Scholar 

  27. I.H. Jung, M. Sanjari, J. Kim, and S. Yue, Role of RE in the deformation and recrystallization of Mg alloy and a new alloy design concept for Mg–RE alloys, Scripta Mater., 102(2015), p. 1.

    Article  Google Scholar 

  28. D. Griffiths, Explaining texture weakening and improved formability in magnesium rare earth alloys, Mater. Sci. Technol., 31(2015), No. 1, p. 10.

    Article  Google Scholar 

  29. N. Stanford, The effect of rare earth elements on the behaviour of magnesium-based alloys: Part 2—recrystallisation and texture development, Mater. Sci. Eng. A, 565(2013), p. 469.

    Article  Google Scholar 

  30. W. Wlake, E. Hadasik, J. Przondziono, D. Kuc, I. Bednarczyk, and G. Niewiński, Plasticity and corrosion resistance of magnesium alloy WE43, Arch. Mater. Sci. Eng., 51(2011), No. 1, p. 16.

    Google Scholar 

  31. H. Beladi and M. Barnett, Influence of aging pre-treatment on the compressive deformation of WE54 alloy, Mater. Sci. Eng. A, 452-453(2007), p. 306.

    Article  Google Scholar 

  32. S.A. Farzadfar, M. Sanjari, I.H. Jung, E. Essadiqi, and S. Yue, Role of yttrium in the microstructure and texture evolution of Mg, Mater. Sci. Eng. A, 528(2011), No. 22-23, p. 6742.

    Article  Google Scholar 

  33. S.A. Farzadfar, É. Martin, M. Sanjari, E. Essadiqi, M.A. Wells, and S. Yue, On the deformation, recrystallization and texture of hot-rolled Mg–2.9Y and Mg–2.9Zn solid solution alloys-A comparative study, Mater. Sci. Eng. A, 534(2012), Suppl. C, p. 209.

    Article  Google Scholar 

  34. W. Guo, Q.D. Wang, B. Ye, M.P. Liu, T. Peng, X.T. Liu, and H. Zhou, Enhanced microstructure homogeneity and mechanical properties of AZ31 magnesium alloy by repetitive upsetting, Mater. Sci. Eng. A, 540(2012), p. 115.

    Article  Google Scholar 

  35. S.K. Panigrahi, W. Yuan, R.S. Mishra, R. DeLorme, B. Davis, R.A. Howell, and K. Cho, A study on the combined effect of forging and aging in Mg–Y–RE alloy, Mater. Sci. Eng. A, 530(2011), p. 28.

    Article  Google Scholar 

  36. J. She, F.S. Pan, W. Guo, A.T. Tang, Z.Y. Gao, S.Q. Luo, K. Song, Z.W. Yu, and M. Rashad, Effect of high Mn content on development of ultra-fine grain extruded magnesium alloy, Mater. Des., 90(2016), p. 7.

    Article  Google Scholar 

  37. S. Amani, G. Faraji, and K. Abrinia, Microstructure and hardness inhomogeneity of fine-grained AM60 magnesium alloy subjected to cyclic expansion extrusion (CEE), J. Manuf. Processes, 28(2017), Part 1, p. 197.

    Article  Google Scholar 

  38. F. Akbaripanah, F. Fereshteh-Saniee, R. Mahmudi, and H.K. Kim, Microstructural homogeneity, texture, tensile and shear behavior of AM60 magnesium alloy produced by extrusion and equal channel angular pressing, Mater. Des., 43(2013), p. 31.

    Article  Google Scholar 

  39. Y. Estrin, L.S. Toth, A. Molinari, and Y. Bréchet, A dislocation-based model for all hardening stages in large strain deformation, Acta Mater., 46(1998), No. 15, p. 5509.

    Article  Google Scholar 

  40. Q. Chen, D.Y. Shu, C.K. Hu, Z.D. Zhao, and B.G. Yuan, Grain refinement in an as-cast AZ61 magnesium alloy processed by multi-axial forging under the multitemperature processing procedure, Mater. Sci. Eng. A, 541(2012), p. 98.

    Article  Google Scholar 

  41. P. Minárik, R. Král, J. Čížek, and F. Chmelík, Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP, Acta Mater., 107(2016), p. 83.

    Article  Google Scholar 

  42. H. Huang, Z.B. Tang, Y. Tian, G.Z. Jia, J.L. Niu, H. Zhang, J. Pei, and G.Y. Yuan, Effects of cyclic extrusion and compression parameters on microstructure and mechanical properties of Mg–1.50 Zn–0.25 Gd alloy, Mater. Des., 86(2015), p. 788.

    Article  Google Scholar 

  43. E. Orawan, The symposium on internal stresses in metals and alloys, Institute of Metals, London, 1948, p. 451.

    Google Scholar 

  44. M.F. Ashby, The theory of the critical shear stress and work hardening of dispersion-hardened crystals, Philos. Mag.: J. Theor. Exp. Appl. Phys., 14(1966), No. 132, p. 1157.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghader Faraji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amani, S., Faraji, G. Recrystallization and mechanical properties of WE43 magnesium alloy processed via cyclic expansion extrusion. Int J Miner Metall Mater 25, 672–681 (2018). https://doi.org/10.1007/s12613-018-1614-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1614-7

Keywords

Navigation